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Introduction
Coenzyme Q10 (CoQ10), otherwise known as ubiquinone 

(UQ), is a valuable bioactive compound used both medically 
and cosmetically [1]. Many studies focus on enhancing CoQ10 
production in Escherichia coli (E.coli) by genetic engineering [2-
9]. Agrobacterium tumefaciens also have been employed as the 
producers of CoQ10 [10,11]. Typical purple non-sulfur bacteria 
(PNSB) generally have a relatively high content of CoQ10, as 
ideal CoQ10 producers [12-16]. R. Palustris (Rhodopseudomonas 
palustris) is a PNSB with a high content of inherent CoQ10, 
whose fermentation processes have been well researched over 
the years [17,18]. Therefore, R. Palustris could be a potential 
host for CoQ10 production by metabolic engineering. 

R. palustris TIE-1 contains more than 30mg/l DCW (dry cell 
weight) of hopanoids that are not required for growth under 
normal conditions, although they play a role in membrane 
integrity and pH homeostasis [19]. The deletion of squalene-
hopene cyclase protein (Shc), which cyclizes squalene to the 
basic hopene structure, can make the strain no longer produce 
any hopanoids [19]. As the synthesis of hopanoids occurs as 
a branched pathway of CoQ10 synthesis in R. palustris TIE- 

 
1 (Figure 1), it was hypothesized that blocking the hopanoids 
pathway might direct FPP flux towards CoQ10 pathway. 

Figure1: Coenzyme Q10 biosynthesis and branched pathways. 
Relevant abbreviations: DMAPP: Dimethylallyl Diphosphate; 
DPS: Decaprenyl Diphosphate Synthase Gene; DXP: 1-deoxy-
xylulose 5-phosphate; FPP: Farnesyl Diphosphate; GAP: 
D-glyceraldehyde-3-phosphate; IPP: Isopentenyl Diphosphate; 
DPP: Decaprenyl Diphosphate; PYR: pyruvate; PHBA: 
Parahydroxybenzoic Acid; SHC: Squalene Hopene Cyclase 
Gene; UBIA: 4-hydroxy Benzoate Octaprenyl Transferase 
Gene.

Given that sodium hydrogen sulfite (NaHSO3) could enhance 
the growths of plant [20,21] and Cyanobacterium synechocytis 
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[22] by increasing cyclic photophosphorylation and 
photosynthesis, We hypothesized that the photophosphorylation 
could be increased by NaHSO3 in R. palustris, and the 
accumulation of CoQ10 might be improved because of that CoQ10 
functions as an electron-transfer agent in photophosphorylation 
[23](Figure 1).

Materials and Methods

Medium, culture conditions and general methods

The bacteria seed cultivation was performed at 30 0c in 
YP medium (3g/l peptone, 3/l yeast extract, pH 6.5) for 48h 
under aerobic condition. The engineered R. palustris strains for 
squalene overproduction were cultured at 30 0c in a designed 
medium (2g/l sodium succinate, 10g/l glucose, 3g/l peptone, 
3g/l yeast extract, 2g/l KH2PO4, 2g/l K2HPO4, 2g/l MgSO4•7H2O, 
0.5g/l FeSO4.7H2O, 5ml/l mineral solution, pH 6.5) under 
anaerobic condition. The mineral solution contained: 1g/l 
NaMoO4•2H2O, 2g/l CuSO4•5H2O, 1g/l ZnSO4, 1g/l H3BO3, 1g/l 
MnCl2. Anaerobic cultivation was achieved via static culture in 
the presence of nitrogen with white fluorescent light (3200 lx). 
Kanamycin of 350mg/l was supplemented to the culture media 
to retain the constructed plasmids with corresponding antibiotic 
selection markers. All the cell cultures were grown for 120h to 
be in the stationary phase, before the cells were collected for 
CoQ10 analysis.

General molecular manipulations were performed according 
to standard protocols. PCRs were performed using PrimeSTAR 
HS DNA polymerase (TaKaRa, Dalian City, China). Electroporator 
(Eppendorf, Humburg, Germany) was utilized for transforming 
the constructed plasmids into the R. palustris strains (12.5kv/
cm, 200 Ω, 25 μF).

Plasmid construction

For gene overexpression, the primers F_dps_EcoRI 
(GGAATTCGTGAATGGGATTGGACGAG GTTTCG) and R_dps_
BamHI (CGGGATCCTCAGGCGATGCGTTCGACCA) were used 
to amplify dps gene from Rhodobacter sphaeroides. And 
then, the gene segment was ligated into pMG103 between 
EcoR I and BamH I sites to generate the plasmid pMGD. The 
ubiA gene was amplified with the primers F_ubiA_BamHI 
(CGGGATCCATGAGTGGAATTCCGGCCAG) and R_ubiA_ HindIII 
(CCCAAGC TTTCACGCCATGCTGCGCGAGA) containing BamHI 
and HindIII sites and ligated into pMGD to generate pMGDU. 

CoQ10 and lycopene assay

Cell growth was measured using a spectrophotometer 
at 600nm and converted to dry cell weight using a prepared 
standard curve of DCW versus OD600•Vol. CoQ10 was extracted 
with an organic solvent from the saponified liquid before being 
subjected to high-performance liquid chromatography (Hitachi, 
Tokyo, Japan), according to the procedure described before [13]. 
The extraction of lycopene was carried out according to previous 
research [24], its content was estimated via HPLC at 475nm [25].

Results and Discussion
Increased CoQ10 content in R. palustris (Δshc)

For accumulating squalene in R. palustris, the shc gene was 
deleted to block hopanoids pathway in our previous study [26]. 
Although the titer of squalene in R. palustris (Δshc) reached 
3.8mg/g DCW, it was much lower than the yield of total hopanoids 
(about 30mg/g DCW) in the wild strain, suggesting that many 
FPPs had been directed into other pathways. Here, R. palustris 
(Δshc) was employed to study the accumulation of CoQ10 and 
carotenoids. Lycopene, a metabolite in the carotenoids pathway, 
was analyzed to represent the accumulation of carotenoids. 

As shown in Figure 2, the CoQ10 content of R. palustris 
(Δshc) reached 3.71mg/g DCW, which corresponds to a 34.7% 
improvement over the parental strain R. palustris TIE-1. 
Moreover, R. palustris (Δshc) yielded a 46.2% improvement 
of the lycopene content over R. palustris TIE-1. These results 
suggested that shc deletion diverted the FPP flux from the 
production of hopanoids to the biosyntheses of both CoQ10 and 
carotenoids. It is noteworthy that there was not a noticeable 
decrease in biomass of the recombinant strain, demonstrating 
the hopanoids pathway blocking was an efficient strategy for 
improving CoQ10 production. However, carotenoids content 
increased more significantly, means that the increase in CoQ10 
production might be restricted by the increased carotenoids 
yield because it consumed more FPP (Figure 2).

Figure2: The deletion of shc gene increased the contents 
of CoQ10 and lycopene. The results represent the mean 
value±SD of duplicate samples in three independent 
experiments. “* *” means significant difference (p<0.01).

CoQ10 production improvement by the co-expression 
of dps and ubiA

To divert more FPP to the biosynthesis of CoQ10, decaprenyl 
diphosphate synthase (Dps) from Rhodobacter sphaeroides 
2.4.1 which catalyzes FPP to form DPP was expressed. The 
investigation revealed that the CoQ10 content of R. palustris 
(Δshc)/pMGD was increased to 4.38mg/g DCW but the CoQ10 
content in R. palustris TIE-1/pMGD only reached 3.15mg/g DCW 
(Table 1). It was clear that the increment of CoQ10 content in R. 
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palustris (Δshc)/pMGD was higher than that in R. palustris TIE-
1/pMGD. In the meantime the lycopene content in R. palustris 
(Δshc)/pMGD was decreased from 5.06mg/g DCW to 4.67mg/g 
DCW (Table 1). Results suggested that the Dps expression 
enhanced FPP flux to the biosynthesis of CoQ10 and decreased 
the FPP flux to carotenoids pathway. However, the increment of 
CoQ10 content was not as high as expected. It was hypothesized 
that the limited pools of pHBA and UbiA restricted the utilization 
of DPP for CoQ10 biosynthesis, although more DPP had been 
formed by Dps expression.

UbiA which catalyzes pHBA and DPP to form decaprenyl-
pHBA is one of the rate-limiting enzymes in the synthetic 

pathway of CoQ10. And its overexpression has been shown to 
increase CoQ10 content, especially when accompanied with the 
supplementation of pHBA [2,6]. To increase the utilization of DPP 
for CoQ10 biosynthesis, endogenous UbiA was over expressed 
along with the pHBA supplementation (100mg/l). As can be 
seen in Table 1, the CoQ10 content was increased to 6.16mg/g 
DCW in R. palustris (Δshc)/pMGDU, while that was 4.42mg/g 
DCW for R. palustris TIE-1/pMGDU. Notably, the lycopene 
content was further decreased to 3.92 mg/g DCW. Obviously, the 
expression of UbiA and supplementation with pHBA enhanced 
the competitiveness of CoQ10 pathway for FPP. However, the cell 
mass was slightly decreased, which may caused by metabolic 
burden due to protein overexpression (Table 1). 

Table 1: Content of CoQ10 under the co-expression of genes.

Strategies
Coq10 Content

(Mg/G DCW)

Lycopene Content

(Mg/G DCW)

Biomass

(G/L DCW)

WT Dshc WT Dshc WT Dshc

CK 2.75±0.12 3.71±0.17 3.46±0.16 5.06±0.25 1.17±0.07 1.15±0.09

dps+ 3.15±0.15 4.38±0.22 3.24±0.14 4.67±0.27 1.05±0.06 1.08±0.05

dps+ ubiA+pHBA+ 4.42±0.18 6.16±0.26 2.73±0.13 3.92±0.19 1.09±0.09 1.06±0.08

WT, R. palustris TIE-1; Dshc, R. palustris (Δshc); CK, control; +, expression or supplementation; Data represent the mean value±SD of duplicate 
samples from three separate experiments.

NaHSO3 enhanced both CoQ10 content and biomass

Figure3: NaHSO3 increased the biomass and CoQ10 content 
of R. palustris TIE-1. The results represent the mean value ± 
SD of duplicate samples in three independent experiments.

To study the influence of NaHSO3 on the cell growth and 
CoQ10 production of R. palustris TIE-1, NaHSO3 at different 
levels was supplemented into the culture medium. As shown 
in Figure 3, both the biomass and the CoQ10 content were 
increased in the presence of NaHSO3. The supplementation with 
0.5mM NaHSO3 resulted in 6.51mg/g DCW CoQ10 and 1.33g/l 
biomass, generating the highest CoQ10 production of 8.65mg/g, 
corresponding to a 33.2% improvement over the control (Figure 
3). The increases in biomass and CoQ10 content indicated that 
NaHSO3 increased the photo-phosphorylation with intensified 

electron transport efficiency, and thus the accumulation of 
CoQ10 was enhanced as one of the electron transfer agents. 
In future, more studies are needed to explore the functional 
mechanism of NaHSO3 (Figure 3).

Conclusion
In this study, we report several strategies, including 

hopanoids pathway blocking, genes co-expression and NaHSO3 
supplementation, for enhancing CoQ10 production. Based on the 
combination of these strategies, the content of CoQ10 reached 
6.51mg/g DCW, which was 1.3-times higher than that for wild-
type strain. This work enriched the strategy for metabolic 
engineering and showed the potential of producing coenzyme 
Q10 by Rhodopseudomonas palustris TIE-1.
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