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Introduction
Coastal Areas support increasing population worldwide, 

for whom marine ecosystems constitute either directly or 
indirectly, principal economic resources. For instance, over 
two billion people worldwide rely on seafood consumption and 
sea products for their diet [1]. Alternatively, the ocean appears 
as a promising reservoir for novel pharmaceuticals [2], but 
simultaneously, novel energetic and mining resources [3-5]. 
However, oceanic ecosystems are today suffering from past 
but also novel, rapidly diversifying modern human activities. 
Indeed, this common reservoir suffers from environmental 
pressure exerted by humans on the marine ecosystems itself, 
such as of shore petroleum production, sea transport or fishing 
[6] but also, more recently exploitation of deep sea metallic 
nodules [5], marine aquaculture [7], rocket launching activities 
and installation of offshore wind mills fields, but also, indirectly 
from the exploitation of nearby terrestrial ecosystems by 
tourism, agriculture and industry, (including mining) [8-10]. 
Even exponentially increasing marine aquaculture (that is today  

 
expected to supplement natural stocks of seafood and which  
relies on availability of uncontaminated water), actively impacts 
marine ecosystems, through the release from marine farms, 
of antimicrobials, food supplements, nutrients, and disease 
controlling substances [7] (in final EMIDA MOLTRAQ project’s 
report). While most contaminations are concentrated in coastal 
zones, mainly affecting pelagic and benthic food webs of the 
continental shelf [11], long-range transport of contaminants 
through large distances has been described in the literature [12]. 
The sustainability of these marine resources and their derivative 
activities thus appears today as a major common preoccupation 
worldwide [1,13].

Pollutants affecting marine ecosystems include a wide 
range of synthetic organic chemicals, (Substances of particular 
concern are chlorobiphenyls, chlorinated dioxins, pesticides 
and some industrial solvents); diverse heavy metals and alloys 
with principal focus on mercury or chromium VI; but also, 
alternatively, toxins and pathogenic species; pharmaceuticals 
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and personal care products; plastic materials; and more recently, 
genetically modified organisms [14]. Contaminants tend to 
accumulate through marine food webs, biomagnified in a greater 
extent than through their continental counterparts due, among 
other, to their higher complexity and compartment level. Their 
final accumulation in fish tissues is of major public concern 
[15,16]. Indeed, since the widely discussed Minamata case [17], 
end-level human consumption of contaminated marine products 
evolves novel interrogations, while reported impacts on human 
health increases and diversifies. Effects on human health include 
today, among other, neurologic disorders, endocrine-disrupting 
functions, developmental problems [18] but also, human 
reproduction, neurobehavioral development, liver function, birth 
weight, immune response, and tumorigenesis [19]. Additionally, 
in given cases, microorganisms have been reported that are 
able to degrade, sometimes only partially, given molecules 
through complex pathways, sometimes liberating metabolic 
intermediates with higher toxicity than the originally released 
environmental contaminant [20]. Unfortunately, association 
with deleterious effects of specific compounds is very difficult 
and follow up of this extending diversity and complexity of 
environmental contaminants, requires integrated approaches. 

Discussion
Environmental monitoring requires rapid, efficient and cost-

effective methods for detecting pollutants at risk to accumulate 
in marine food webs and to impact human health. However, 
toxicity level for a given compound is not restricted to the 

chemical property of a substance or to its concentration, but 
rather relies on its bioavailability which is highly dependent 
on environmental conditions [21]. For instance, levels of clay 
particles, dissolved or particulate carbonates, silicates, sulfides 
and organic matters are acting as complexing factors for most 
metals but also given organic contaminants. Additionally, metal 
toxicity is highly related to their redox level [22], the latter 
being itself influenced, among other, by microbial metabolism 
of metals, that may be used for given microbial groups, 
as alternative electron receptors in anaerobic respiration 
processes. Among available methods, the use of bioindicators 
and biomarkers of marine contamination is an interesting tool 
to assess deleterious effects of environmental contaminants 
in marine ecosystems, as it is clearly correlated with levels of 
bioavailable contaminants. Thus, several inventories of marine 
biotest methods have already been compiled and their interest 
reviewed [23-26]. Indeed, both marine microflora, (among 
others foraminifers [27,28], diatoms [29], dinoflagellate 
cyst [30] but also macrofauna have been mined for relevant 
bioindicator species and used in biomonitoring of environmental 
contaminations [31]: Among macrofaunal organisms, literature 
reports communities and individual species of copepods 
[32,33], bivalves [34,35], echinoderms [36,37], sponges [38,39], 
anemones [40], crustaceans [41,42], insects [43], fishes [44,45] 
and even birds [46]. Some examples are summarized in Table 1 
that illustrates the extreme diversity of bioindicator organisms 
and the lack of consensus at international scale.

Table 1:  Illustration of the diversity of bioindicators used for environmental  monitoring in marine areas.

Species Environment Contaminant Reference

Bacteria
Vibrio fischeri

Vibrio sp.

in vitro
mediterranean laguna

wide range of chemicals
pathogens

[47,48]

Phytoplancton Taipei [49]

Green algae
    Ulva lactuca
    Ulva rigida
Brown algae

Lobophora variegata

Hong Kong

tropical waters

metals
Hg, Cu, Cd, Zn, Ni, Cr

Cd, Co, Cr, Ni, Zn

[49-51]

Foraminifera marine, benthic heavy metals [27,28,52]

Sponges
Spongia officinalis

    Haliclona tenuiramosa
Indian Gulf

Polychlorobiphenyl 
Fe, Mn, Ni, Cu, As, Co, Cd [53,54]

Cnidaria
Aurelia aurita (ephyra)

Anemona viridis
Actinia equina

    Nematostella vectensis

water column
sessile
sessile

estuarine sediments

SDS, Cd(NO3)2
Cd, Zn
Cd, Zn
CdCl2

[55,56]

Annelida 
    Arenicola marina

    Hediste diversicolor
sediment, coasts, ports

PAHs, Pb, Pharmaceuticals
pharmaceuticals

[57,58]
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Bivalves   
    Mytilus edulis

    Mytilus galloprovincialis
Crassostrea gigas

    Crassostrea virginica
    Crassostrea corteziensis

    Mytella strigata
Pinctada radiata

    Venus verrucosa

coast 

Arabian Gulf
Mauritania

Cd, Hg 
Cu, Cr, Ni, Zn, Fe, Mn, 137Cs

Zn>Fe,Cu>Mn>Ni>Pb>Cr>Cd

Zn>Fe,Cu>Mn>Ni>Pb>Cr>Cd
metals

Cd, Cu, Fe, Mn, Zn

Hg, Cu, Cd, Zn, Ni, Cr

[35,50,59-68]

    Macoma balthica
Tapes philipinarum

    Perna viridis
    Anadara granosa

    Soletellina acuminata
Gastropoda

    Trivia monacha
    Trivia arctica
Hinia reticulata

    Nucella lapillus
    Donax trunculus

estuaries

Hong Kong
Malaysia

Mangroves

North Atlantic
North Atlantic

Mauritania

PCB
As, Cd, Cr, Cu, Pb, Se, Zn

PAH

Tributyltin
Tributyltin
Tributyltin
Tributyltin

Cd, Cu, Fe, Mn, Zn

Amphipoda
Corophium volutator

    Echinogammarus pirloti
    Gammarus locusta

    Gammarus zaddachi 
    Gammarus salinus

Branchiopoda
    Artemia salina

Ostracoda
    Cypris sp.

    Cyprideis torosa
    Leptocythere psammophila

Decapoda
    Palaemon elegans

    Litopenaeus vannemei
Cirripedia

    Balanus amphitrite
    Fistulobalanus dentivarians 

    Elminis modestus

Mediterranean coast, marine and 
estuarine sediments

in vitro

Cu, Zn, Cd
Zn, Cu, Cd

CuSO4, PbSO4, ZnSO4, NiSO4

Cu, Zn, Cr, Pb, Al, Si, Fe, Ca, Mg, 
Na, Mn, Ba, Sr, S, Cl, oil, industrial 

waste water

Zn, Cu, Cd
Zn>Mn>Cu>Pb>Ni>Cr>Cd

Zn, Cu, Cd

[60,69-76]

Insecta
    Halobates micans surface of open ocean, Atlantic Cd [43]

Echinodermata
    Paracentrotus lividus

    (premature)
Iberian coast

Cu, Cd, Pb, Hg
Fe, Zn

[36]

Fish
    Thunnus thynnus

    Katsuwonus

offshore, Japanese coastal 
waters,
wetland

Organochlorines 
Polybrominate biphenyl ethers

[45] 
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pelamis
    Oreochromis niloticus 

    Mullus barbatus
    Serranus hepatus
    Serranus cabrilla
Zoarces viviparus

Mediterranean
Mediterranean
Mediterranean

Zn, Cu, Cr, Mn 
PAH, PCB
PAH, PCB
PAH, PCB

As, Hg, Pb, Ti

[57-59]

Birds
    Sterna sp.
    Larus sp.

    Fulmarus glacialis

estuaries, oceans

North Pacific

Pb, Hg, Cd 
Pb, Hg, Cd 

plastic pollution
[46,77,78]

Further, bioindicators may be classified into two groups: 
Biomarkers on one hand, and sentinel species on the other 
[79,80], biomarkers being generally defined on taxa considered 
as sentinel organisms:

A.	 Distinctively, biomarkers of marine contamination 
require (bio) chemical analysis, such as the concentration 
of a given tracer or pollutant in a given tissue or measure 
of a given biological marker in it [26], using a wide range 
of chemical, molecular, but also physiological approaches 
(among other: biochemical assays, enzyme linked immuno-
sorbent assays (ELISA), spectrophotometric, fluorometric 
measurement, differential pulsed polarography, liquid 
chromatography, atomic absorption spectrometry and 
more recently transcriptomics and metabolomics). Classical 
biomarkers include for instance, cytochrome P4501A 
activity, DNA integrity, acetylcholinesterase activity or 
metallothionein induction. Biomarkers assess, at an infra-
organism level (i.e; they address a tissue, a cell type etc…), 
a physiologic, genetic, molecular, or morphologic response 
[80]. Biomarkers may be considered as anticipative as 
they can enlighten a toxic effect earlier than a lethal effect 
observed at a population level, and affecting whole organisms 

B.	 Sentinel species [81] trace the occurrence level of 
selected species at the population level. Choice of sentinel 
species is based on previously demonstrated correlation 
between the contamination level of a given pollutant and the 
species occurrence and or behaviour. 

C.	 Additionally one may distinguish the toxicological 
approaches performed under laboratory conditions (rather 
relevant for biomarkers) from environmental impact studies 
performed in the field that are often based on numeration of 
sentinel species.

Microbial Bioindicators
Historically, defined microbial species were used as 

bioindicators of water quality to assess risks of microbiological 
contamination by pathogens and guidelines were for long 
defined in the three water-related areas (drinking water, 
wastewater but also (marine) recreational water) by measuring 
indicator bacteria [82,83]. Further, bacterial indicators were 

then derived, among which Vibrio species, to monitor microbial 
status of marine environments. For instance, comparative 
heath status and level of contamination by terrestrial sewages 
of three laguna ecosystems of the French Mediterranean coast 
were monitored through the search for Vibrio species that 
were here used as bioindicators of risks of environmental 
contamination by pathogenic bacteria [84]. Similarly, number of 
microbial bioindicator species were defined to monitor ranges 
of environmental pollutants in the water column, at the water-
sediment interface or within the sediment. Indeed, as microbes 
constitute key actors of the end loop of most biogeochemical 
cycles ( i.e. carbon , nitrogen phosphorous cycles etc..), their role 
is vital for the health of the aquatic ecosystem and modification 
of their population or activity can indeed anticipate further 
impacts noticeable only lately on food webs. Microbial indicators 
were thus generalized to assess environmental changes. For 
instance, Benthic diatoms, among numerous others, have been 
used as markers of marine eutrophication in coastal ecosystems 
[85]. 

Beyond microbial natural species, microbes present the 
advantage to evolve rather rapidly to adapt to adverse condition, 
to degrade novel compounds [20] and to be genetically modifiable 
through mutagenesis and recombinant DNA technology. These, 
advantages were thus used for the development of recombined 
biosensors for numerous environmental contaminants (both 
metallic and organic) and number of bioluminescent biosensors 
especially have been constructed [25,86-88].

Finally today, as molecular tools and their associated 
computing methods develop, comparative diversity analysis 
of marine microbial communities constitutes as a whole, a 
promising indicator of impacts of human activities on marine 
ecosystems. Diversity loss can indeed for long be easily monitored 
using whole community DNA-based molecular approaches. 
Originally, Denaturation Gradient Gel Electrophoresis (DGGE) 
of community amplified 16S or 18S sequences [89] and derived 
DNA pattern analysis tools (based on Random Amplification of 
16S-23S Intergenic Spacers (RISA), Single Strand Conformation 
Polymorphism of community amplified 16S rDNA sequences 
(SSCP) and all derivative methods) appeared useful tools for 
ecologoical monitoring. More recently, metabarcoding (https://
www.embl.de/tara-oceans/start/) [90,91], further, marine 
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ecological (meta)genomics which have been defined as the 
application of genomic sciences to attempt to understand 
the structure and function of marine ecosystems [90], and its 
derivative, comparative metagenomics have started to emerge 
in marine ecotoxicological approaches to assess environmental 
impacts [92]. As Marine ecological (meta) genomics evolves, 
associated computer based analysis of such data could evolve 
rarefaction curves that would indeed be informative of impacts 
at an ecosystemic scale. Further, the -omic based analysis 
of the metabolic behaviours of microbial communities and 
identification of mechanisms that microbes use to respond to 
environmental changes and to adapt to man-made pressures 
may be used for environmental monitoring purposes: Microbial 
biodiversity at itself starts to be used to evolve response-specific 
functional indices tentatively integrating evolution of complex 
interactions between microbial communities. These were based 
on species ecological preferenda and autoecology, especially in 
order to allow the discernment of the stressing factor involved in 
the ecosystem perturbation [85]. Such indexes are informative 
as they attempt to integrate the evolution of the microbial 
community as a whole and combined to modern omics, should 
open novel environmental monitoring area

Molluscs
Molluscs species are interesting bioindicators considering 

their ability to filter large volumes of sea water and thus to 
accumulate trace contaminants. As sessile species presenting 
increased longevity, they constitute interesting bioindicators 
in long term impact studies in given habitats [93,94]. Among 
molluscs, mussels and oysters have been particularly used as 
bioindicators in many countries for marine pollution monitoring 
[95,96]. According to physico-chemical properties of pollutants 
(especially their solubility in sea water and complexing affinity 
to organics or minerals), either filtrating species such as the 
blue mussel (Mytilus edulis), [95,96] or conversely, scavengers 
such as the Manila clam (Ruditapes philippinarum) are used 
[97,98]. However, for the latter, accumulation of a number of 
anthropogenic compounds in clam’s tissues suggests that these 
species may present mechanisms that allow them to cope with 
the toxic effects of contaminants and thus question their use as 
bioindicators.

Alternatively, some authors have used animal behaviour to 
estimate effects of a range of contaminants in various marine 
conditions. For instance Redmond et al. [99] used mussels 
(Mytilus edulis) valve opening and shell movements to assess 
toxicity of dispersed crude oil (DCO); further, changes in patterns 
of movement and social interaction in the gilthead seabream, 
Sparus aurata, were linked to several biomarkers following 
exposure to phenanthrene, a common PAH in petroleum 
products [100]. (Additional examples of use animal behaviour 
or social interactions as bioindicator can be found in [101,102]. 

Fishes 
In Europe, the EC Water Framework Directive (WFD), 

requires from its member states to ensure, among others, a 
satisfactory ecological and chemical status of their coastal and 
marine waters which is defined on a basis of an a priority list of 
hazardous chemicals and substances with associated standard 
values based on concentrations found in certain marine 
organisms, and notably in fishes. Length and cost of chemical 
determinations lack of anticipation of potential pollution risks 
by other substances have been underlined and stress tests 
and bioindicators of fish health have been evolved for a range 
of species. Fish species used as bioindicators include, among 
others,: Thunnus thynnus, Katsuwonus pelamis, Oreochromis 
niloticus, Mullus barbatus, Serranus hepatus, Serranus cabrilla, 
Zoarces viviparus [45,103-105](Table 1). Biomarkers have also 
been derived from a set of fish species to assess various marine 
contaminants [105]. However, most classic ecotoxicologic test 
species are currently reconsidered due to the lack of genomic 
sequences that could allow development of cheap and rapid PCR 
based ecotoxicological kits based on long known tissue specific 
responses of target species. 

Definition and main properties of performant 
bioindicators

Conversely to terrestrial conditions for which consensual 
model exists that use for instance rats as reference species for 
toxicity assessments, no consensus has yet been reached for 
marine biomonitoring and often, marine species have been used 
in biomonitoring independently of what should constitute the 
basic properties of a bioindicator [48] that we have to remain 
here:

Indeed, to be relevant and reliable, bioindicators, have to 
present given characteristics: 

A.	 They should appear/ or disappear or react 
concomitantly with the contaminant itself, and behave 
in a quantitative manner (i.e; the measured bioindicator 
population level or intensity of the biomarker response have 
to be proportional to the bioavailable contaminant)

B.	 Anticipative as they require to be particularly sensitive 
to toxic compounds. Resistant species do not constitute 
proper bioindicators or sources for biomarkers.

C.	  Integrative as they may collect and cumulate over a 
period of time the impact of ranges of diverse environmental 
contaminants but also their potential interactions

D.	 Able to distinguish impacts from xenobiotic compounds 
from natural ecological stresses

E.	 They are required to present a wide geographical range. 
Site specific species are not suitable as they do not allow 
inter site comparisons. For instance The clam Ruditapes 
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decussatus and the mussel Mytilus edulis that both present a 
worldwide distribution constitute interesting bioindicators. 
However they do not occur in all marine environments 

F.	 They are easy to sample and to measure

G.	  Cost efficient as they aim at avoiding numerous instant 
measures of potentially toxic substances

H.	 For legal purposes they need to have been previously 
referenced as suitable for ecological impact studies 

Revisiting the biomarker and bioindicator concepts in 
the light of modern -omic sciences 

While pre-millennium ecotoxicological studies concentrated 
on the description of biomarkers and bioindicators, basing their 
choice on preliminary often biased knowledge, modern -omics 
enlighten the requirement to revisit previous concepts, while 
extending the description of biological diversity far beyond 
the known isolable, cultivable, and identifiable species, and 
extending the list of potential genes and function potentially used 
as biomarkers. Conversely, long used consensual biomarkers/
bioindicators have lost interest while failing to provide available 
complete and full annotated genomic sequences. This is the case 
of Mytilus edulis for which a group of researchers interested in 
the use of bivalves as a research model for environmental and 
biomedical purposes, lately decided to join efforts to produce 
and assemble sequences from Sanger and NSG methods to 
elucidate genomic sequence,. The project was initiated in 2010 
only (http://www.openmytilusconsortium.org/) and seems 
today still ongoing, as only the mitochondrial sequences and 
cDNA libraries of M. edulis [107] and M. galloprovincialis [108], 
respectively, seem available. Late sequence availability indeed 
reordered interest for previously consensual bioindicator 
species and their associated biomarker. For instance, availability 
of the fish Danio rerio genomic sequence [109] paved the way 
for the set-up of quantitative PCR based ecotoxicological tests 
[110]. Indeed, the genomic tools for ecotoxicogenomics have 
now been reviewed [111], Miracle & Ankley (2005) with a 
particular emphasis on fish testing that are emerging in this 
field, such as that of the effects of 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) exposure on zebrafish caudal fin regeneration. 
Soon sequence characteristics (such as sequence length of given 
marine species [112] appeared itself a base for environmental 
impact studies. Genomes may also be the base for further 
metabolomics approaches that now emerge as novel ways 
to assess impact of pollutants on the complete metabolism 
of species whose sequence is available –such as in the case of 
Ruditapes philippinarum [113]. 

Novel trends are also integrating epigenics as novel tools 
to assess organismal response to environmental stressors 
[106,114]: indeed, Epigenetic mechanisms in an ecotoxicogical 
context is a new concept and has not yet been considered to be 
integrated into current environmental regulatory practices [115]. 
Epigenetic biomarkers have been demonstrated in humans, mice 

and zebrafish [116-118]. While some newer studies have focused 
on bivalves and other marine invertebrates, epigenetic responses 
appears as next-generation pollution biomonitoring [106,114]. 
Epigenetic techniques can provide the link from environmental 
stressor to detectable biomarker responses and ultimately the 
goal of linking these omic responses to physiological changes 
that can be tied to classical ecotoxicological endpoints.

Conversely, lack of available genomic sequences for 
classically used bioindicator species such as those species 
long used by the US EPA and other environmental regulatory 
agencies for marine toxicity studies including the mysid 
shrimp, Americamysis bahia [119], the sheepshead minnow, 
Cyprinodon variegatus [120] the inland silverside, Menidia 
beryllina [121], the sea urchin Arbacia punctulata [122], and 
the red macroalgae Champia parvula [123], clearly slow down 
the development of functional molecular biomarkers from 
these classic ecotoxicological workhorses. With the passing of 
legislation such as REACH in the EU, the use of whole organism 
toxicity studies will steadily decrease while the demand for 
non-lethal ecotoxicological studies will increase. Biomarker 
and bioindicator studies are excellent candidates to fill this gap. 
Although classical ecotoxicogical endpoints (mortality, growth, 
and reproduction) are still used in regulatory decision making, 
we anticipate the use of biomarker and bioindicator information 
in regulatory frameworks becoming more practical and needed. 

Conclusion
Legal issues are solved for terrestrial ecosystems. However, 

consensual international definition of marine biomarkers 
and bioindicators remains under discussion [48,124]. Classic 
bioindicator species and their derived biomarkers remain thus 
often not fully consensual and vary from country to country 
requiring final common approval. Finally, Environmental 
Protection Agencies appear extremely slow in adapting new 
technologies into their policy making decisions and still relies 
on classical toxicological endpoints such as mortality, growth, 
and reproductive output. We here want to underline the 
necessity to revisit biomarkers in bioindicator species in the 
light of novel omics data. New techniques and technologies 
provide understanding in organismal omic response to stressors 
(chemical or environmental) and warrant more attention and 
integration into regulatory policies [93-124].
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