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Introduction
Lignocellulosic biomass (LBM) is an abundant source of 

renewable energy. It does not compete with food therefore has 
tremendous potential to satisfy the current demand of ethanol 
blending to gasoline [1,2]. LBM is composed of mainly three 
complex polymers namely cellulose, hemicellulose and lignin 
and traces of proteins [3]. Differential arrangement of these 
components with each other governs the biodegradability of 
plants [4,5]. Ethanol production from LBM requires complete 
conversion of cellulose and hemicellulose to fermentable 
monomers. For this, a well designed cocktail of endocellulases, 
cellobiohydrolases, xylanase and β-glucosidase is required. LBM 
being recalcitrant in nature requires acids and alkalis assisted 
pretreatment step to make it amenable to enzymatic hydrolysis 
using cellulases. Acid treatment facilitates hemicellulose 
removal and requires only cellulase to degrade cellulose,  
while alkali treatment retains cellulose and hemicellulose with  

 
partial removal of lignin, thus requires both cellulases and 
hemicellulases for hydrolysis [6].

The cellulolytic system of Trichoderma reesei is well 
established and exploited at commercial level in textile and 
biofuel industries. However, T. reesei produces low amount 
of extracellular β-glucosidase renders partial hydrolysis of 
cellulosic material [7,8]. Therefore commercial enzymes are 
supplemented with β-glucosidase from Aspergillus niger [9]. 
Alternatively, microbes with high β-glucosidase activity will 
improve sugar yields and this has been discussed widely [10]. 
Recently cellulases from Penicillium species are found to be more 
potent since they often display better hydrolytic performance 
at similar enzyme or protein loading in comparison with T. 
reesei enzymes [11,12]. Therefore production of cellulases 
using Penicillium species must be attempted, since it is known 
for balanced enzyme system with high β-glucosidase which 
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Abstract

Competitive alternatives for cellulase producing organism for the development of efficient enzyme mixture should be explored to reduce 
the cost of commercial cellulases in the enzymatic hydrolysis of lignocellulosic biomass. Cellulolytic enzyme mixtures were produced using 
Penicillium funiculosum and Trichoderma reesei on ammonia treated wheat straw. Cellulolytic assay using crude extract obtained from P. 
funiculosum showed 36%, 181% and 370% higher FPase, CMCase and β-glucosidase specific activity compared to T. reesei. We compared enzyme 
mixtures of these two organisms against differently treated wheat straw, ammonia treated rice straw and bagasse. Culture supernatants obtained 
from both fungi showed equal hydrolytic performance among ammonia treated feedstock. However, P. funiculosum enzyme has released nearly 
8-10% high sugar from rice straw and bagasse than T. reesei enzymes. Pretreatment catalysts like nitric, ammonia, caustic showed around 10% 
less hydrolysis using T. reesei enzyme extract, than P. funiculosum derived enzyme extracts. Here, we found that T. reesei with lower β-glucosidase 
causes decreased glucan and xylan hydrolyzing capacity than enzyme extract of P. funiculosum. However, this lower glucan yield is compensated 
for high cellobiose yield using T. reesei derived enzymes. Caustic pretreatment showed higher digestibility irrespective of enzyme source. Finally 
supplementation of β-glucosidase showed improvement in high glucose release and ultimately hydrolytic performance by more than 20%.
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in turn depicts great potential of cellulases [13-15]. Though 
the potential of cellulase produced using Penicillium is higher, 
their protein secretion ability must be improved to replace the 
T. reesei, an undisputed king of cellulase production. Moreover, 
only one commercial cellulase preparation “Rovabio® Excel” 
from Adisseo (France) company is available using P. funiculosum 
[16] as against T. reesei which is exploited by many commercial 
companies showed scope for this study. P. funiculosum is not 
well characterized for cellulase production as compared to T. 
reesei, Therefore screening of enzymes obtained across these 
two strains may proved to be a viable option for establishing 
improved enzyme mixture. Moreover, to our best knowledge 
rare studies have been carried out for comparison between 
T. reesei and P. funiculosum for cellulases production and its 
saccharification potential using LBM. However, Van Wyk JPH et 
al. [17] showed comparative studies using paper products as a 
substrate for hydrolysis.

The goal of current study is to understand cellulase production 
using P. funiculosum and T. reesei by analyzing their hydrolytic 

potential against physico-chemically different LBMs. Acid and/
or base catalysts were used for the preparation of substrates 
with diverse characteristics. The effect of supplemented 
β-glucosidase was also analysed for enhancing hydrolytic 
performance of in house produced cellulases and compared with 
commercial enzyme CTec2 during saccharification.

Materials and Methods
Substrate preparation for hydrolysis

Agricultural residues like wheat straw, rice straw and bagasse 
were obtained from the fields of Uttarakhand in Northern 
India (was supplied by India Glycols Ltd., Uttarakhand, India). 
These residues were pretreated using alkali and acid. For alkali 
pretreatment ammonia and caustic, while for acid pretreatment 
HNO3 were used at different pretreatment conditions (Table 
1). The solid contents of differently pretreated substrates were 
evaluated according to NREL Laboratory Analytical Protocol 
[18]. The residual solids were rinsed with water to remove the 
soluble matters like lignin. Pretreated biomass was stored at 4 
°C till further use.

Table 1: Preparation of substrates. Wheat straw was sieved through 200um mesh to get uniform size before chemical pretreatments. Reactions 
were carried out in high pressure stirred reactor provided by Amar equipment Pvt. Ltd.

Pretreament Temperature 
(°C) Pressure (Bar) Time 

(minutes) Glucose (%) Xylose (%) Arabinose (%) Lignin(%)

12.5% NH3 
(AWS) 150 15-18 bar 30 67 20.5 1.04 9.80

12.5% NH3 
(ARS) 150 15-18 bar 30 61.7 22.65 3.15 10.60

12.5% NH3 
(ABG) 150 15-18 bar 30 62.67 19.22 1.15 12.60

10% NaOH 
(CWS) 120 3-5 bar 30 87.91 5.26 0.44 6.47

2%HNO3 (NWS) 120 7-8 bar 30 72.00 5.04 0.00 10.32

AWS: Ammonia Treated Wheat Straw; ABG: Ammonia Treated Bagasse; ARS: Ammonia Treated Rice Straw; NWS: Nitrate Treated Wheat 
Straw; CWS: Caustic Treated Wheat Straw

In-house production of cellulase mixtures
The P. funiculosum (NCIM 1228) strain was obtained from 

National Collection of Industrial Microorganism, National 
Chemical Laboratory (NCIM-NCL), Pune, India and T. reesei 
QM6a strain was obtained from Lovely professional university 
(LPU), India. Strains were maintained on Potato dextrose agar 
(PDA; Hi Media, Mumbai, India) at 28 °C and stored on PDA 
slants. AWS was used as inducing substrate for the production 
of cellulases. 1% of AWS was dispensed into 250ml Erlenmeyer 
flasks, containing 100ml of mineral salt solution (Urea-0.3gm/l, 
CaCl2.2H2O-0.4g/l, MgSO4.7H2O-0.3g/l, (NH4)2 SO4-1.4gm/l, 
KH2SO4-2gm/l, Peptone-1g/l, Tween 80-0.2gm/l, FeSO47H2O-
5mg/l, MnSO47H2O-1.6mg/l, ZnSO47H2O-1.4mg/l, CoCl2.6H2O-
2mg/l. The initial pH was 4.

Flasks with mineral salt solution and carbon source were 
sterilized using autoclave at 121 °C, 15psi for 20 minutes after 
sterilization and cooling spores were inoculated from Petri plate 
to the flasks. The initial pH was adjusted at 4 by adding 5% H2SO4. 

Aeration was provided by shaking at 200rpm to induce enzyme 
production for period of 5 days. Samples were was centrifuged at 
7000rpm for 15 minutes and supernatant were stored at 4 °C for 
analyzing FPase, CMCase, BG activity and protein concentration.

Enzyme assays
The crude enzyme mixtures obtained were assayed for FPase, 

CMCase and β-glucosidase activities, as described by the Ghose 
et al. [19]. Protein concentration was measured using Bio-Rad 
Protein Assay (Bio-Rad Laboratories, USA) using Bradford assay 
with BSA as standard. Determination of reducing sugar was done 
by dinitrosalicylic acid method. The xylanase were assayed using 
method described by Bailey M et al. [20] using birchwood xylan 
obtained from Sigma.

Hydrolysis using in-house produced enzyme mixtures
The crude enzyme mixtures obtained from P. funiculosum 

and T. reesei using ammonia treated wheat straw (AWS) were 
used for hydrolyzing ammonia treated wheat straw, bagasse, 
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rice straw (AWS, ABG, ARS). In order to study the effect of 
different pretreatment, nitric and caustic treated wheat straw 
(NWS, CWS) were also used as a substrate for hydrolysis. 
Enzyme mixtures obtained here were used in duplicates to 
hydrolyze above five different type of pretreatment/ substrate 
combinations at 15FPU/g enzymes loading. To improve the 
hydrolytic performance, external β-glucosidase (7.5CBU/gm 
biomass) was added to the in-house produced cellulases. For 
comparative study, CTec2 (commercial cellulase preparation) 
was used as a control in this experiment. All the substrates were 
suspended in the citrate buffer to make 1% and 2.5% slurry for 
hydrolysis at pH 4.8. Hydrolysis was carried out using 50 °C for 
24hrs. Samples were harvested and centrifuged at 8000rpm for 
15 minutes. 

Analytical methods
Sugar samples obtained after ASTM and enzymatic 

hydrolysis were analyzed with the help of high performance 
liquid chromatography (Agilent, India) using refractive index 
detector. Cellobiose, and monomers like glucose, xylose and 
arabinose were separated using an Aminex 87-H column (Biorad, 
Hercules, CA, USA) at 50 °C with 5mM H2SO4 as eluent at flow 
rate of 0.6ml/min. 

Result and Discussion
Preparation of substrates

Pretreatment helps in reducing recalcitrance and complexity 
which facilitates augmentation in hydrolysis. Here, the 
composition of ammonia pretreated substrates like wheat straw 
(AWS), rice straw (ARS) and bagasse (ABG) is shown in the 
Table 1. The major components of these pretreated substrates 
were glucan (60-70%), followed by xylan (11 to 23%), lignin 
(8 to 13%) and ash 0.5 to 2%. Soluble components in all the 
substrates proved to be glucose, xylose and traces of arabinose. 
The ammonia pretreatment facilitates the partial removal of 
lignin and retains holocellulose (Hemicellulose + Cellulose) in 
intact form. This particular pretreatment allows minimal loss 
of sugar components. Alternatively wheat straw was pretreated 
with nitric acid and caustic to generate substrates with different 
physicochemical characteristics. Here we focused on the 

amenability of these substrates towards cellulases induced by 
one type (AWS) of substrate.

In-house lignocellulolytic enzyme production and 
their hydrolytic screening

T. reesei and P. funiculosum NCIM 1228 was grown on 
ammonia pretreated substrates for the production of the 
lignocellulolytic enzymes to use them in hydrolysis of differently 
pretreated lignocellulosic biomass. The concentration of 
substrate used was 1% on dry weight basis. 

After successful enzyme production, hydrolytic performance 
was analyzed using enzyme extracted on different days of 
fermentation to find out the potential period for culture 
harvesting. Enzyme activities from P. funiculosum on 3rd day 
showed low β-glucosidase activity (0.02U/ml) but reasonable 
FPase (0.14U/ml) and high endoglucanase activity (0.47U/ml). 
The endoglucanase activity remained more or less stable on 5th 
and 7th day, however as fermentation progresses the FPase and 
β-glucosidase activity increased to 0.3 and 0.07 (on 5th day), 0.33 
and 0.1 (on 7th day). On the other hand, T. reesei showed decreasing 
trends of activities from 3rd, 5th and 7th day for endoglucanase/
ml (0.65, 0.44, and 0.37) and β-glucosidase activity (0.06, 0.03, 
and 0.01). However FPase activity showed highest activities on 
the 7th day (0.44U/ml) as compared to 3rd (0.37U/ml) and 5th 
day (0.29U/ml). Therefore, to compare the hydrolytic potential 
of enzyme extracts, enzymes derived from these organisms were 
used for hydrolysis of 1% biomass at enzyme loading of 15FPU/g. 
Increasing hydrolysis trend was observed using P. funiculosum 
enzyme extracts derived on 3rd day (38%), 7th day (44%) and 
highest hydrolysis was observed using enzyme extracts of 5th 
day (48%). This trend was exactly reverse for T. reesei where 
highest hydrolysis (35.45%) using enzyme extracts derived on 
3rd day as compared to 5th day (31.58%) and 7th day (12.8%) 
as shown in Figure 1. Therefore, 5th day was found to be suitable 
based on two aspects, firstly, it showed balanced activity of 
FPase, endoglucanase and β-glucosidase for both organisms and 
secondly, it showed sufficient hydrolyzing ability using T. reesei 
and P. funiculosum. Furthermore this selection was screened to 
compare two organisms’ potencies for maximum hydrolysis at 
similar enzyme loading using different substrates.

Table 2: Relation between xylanases and β-glucosidase. Enzyme ratios derived from T. ressei and P. funiculosum. The data presented are the 
mean values of two separate measurements. The standard deviation for above mentioned values is less than 10%.

Enzymes BG: Xylanase Highest Xylose Release BG: FPase Highest Glucose Release

T. reesei 01:00.0 34.50-45.83% 0.068 27.75-38.66%

P. funiculosum 01:00.0 38.00-61.46% 0.232 36.52-44.08%
β-glucosidase; FPase: Filter Paper Activity

Specific activities of the enzymes produced after 5 days of 
fermentation is shown in Table 2. FPase, CMCase, B-glucosidase 
used to determine the cellulase activity, and xylanase for 
hemicellulase activity. There were significant differences in 
the enzyme titer produced by these two organisms and it 
showed that different fungi responded differently to the same 
substrates. Similar observation also reported by Rosa Estela et 
al. [21]. Protein, FPase and xylanase (0.3mg/ml, 0.44FPU/ml and 

72.48U/ml) produced by T. reesei is higher than P. funiculosum 
(0.15mg/ml, 0.30FPU/ml and 23.04U/ml). However higher 
endocellulase and β-glucosidase production by P. funiculosum 
(0.51CMCase/ml and 0.07CBU/ml) as compared to T. reesei 
(0.37CMCase/ml and 0.03CBU/ml) differentiate the production 
profile of these two organisms on the same inducing substrate. 
However, T. reesei culture showed FPase, CMCase, β-glucosidase 
specific activity lower than that of the P. funiculosum.
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Hydrolytic efficiency of the crude culture

Figure 1: Hydrolytic performance of cellulase extracted at different time points. Extraction of cellulase at different time-points and their 
hydrolytic performance Enzyme titers (U/ml) derived from T. reesei and P. funiculosum on different days of fermentation (A1 and B1). Their 
hydrolytic performance showed in figure (A2 and B2). The activities presented are the mean values of two separate measurements. The 
standard deviation for above mentioned values is less than 10%.

Figure 2: Hydrolytic performance of cellulases derived from fungi. Enzymatic hydrolysis of Ammonia pretreated lignocelluloses using in 
house cellulases Sugar production profile (A) Glucose production (B) Xylose production (C) Reducing sugar production from different 
feedstocks using enzyme derived from T. reesei, P. funiculosum. Here, A,B,C shows different feedstocks but same pretreatment and D,E,F 
showed same feedstocks but different pretreatment. Blue and red bar represents for glucose and xylose release after 12hrs and 24hrs.

Using ammonia pretreatment of different substrates: 
The hydrolytic efficiency of the culture supernatants was carried 
out at 1% (w/v, dry basis) with 15FPU/g enzymes loading to 
relate the compatibility of different enzyme source on various 
lignocellulosic substrates. Figure 1 gives the yields of glucose, 
xylose and total sugar achieved in the hydrolysis of AWS, ARS, 
and ABG. Yield of arabinose is not discussed much here as it 
contributes very less in the total sugar content of biomass. The 
ASTM analysis showed concentrations of glucose were similar 

for AWS, ARS, and ABG (67, 61 & 62%, respectively), however 
after hydrolysis, significant difference in glucose concentrations 
were observed using two different enzyme extracts. The highest 
levels were reached for AWS (2.88mg/ml) and lowest for the 
ABG (2.29mg/ml) using P. funiculosum though the difference 
was not significant. Similar trend was observed using T. reesei 
which released 2.45 & 1.74mg/ml glucose from AWS and ABG 
respectively. We also observed that the glucose yield obtained 
higher for AWS after 24hrs (38 & 43%) and lowest for ABG 
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(27.75%, 36.5%) and in similar range for ARS (32 and 44%) 
using T. reesei and P. funiculosum enzyme mixtures. Production 
amount of glucose after hydrolysis is directly proportional to 
the ratio of β-glucosidase to FPU. T. reesei being low secretor of 
β-glucosidase [22], The BG to FPase ratio for T. reesei is (1:0.07), 
while P. funiculosum has higher ratio of 0.23 (Table 3). Therefore 

as expected after 24hrs of hydrolytic reaction, glucose yield of 
44.08 and 38.66 using P. funiculosum and T. reesei enzyme mixtures 
respectively. The low ratio of β-glucosidase activity in the T. reesei 
culture is might be responsible for the accumulation of cellobiose 
(Figure 2), which is reported as strong inhibitor of exo and 
endocellulase during enzymatic hydrolysis of cellulose [23-25].

Table 3: Enzyme composition of crude culture extracts. Enzyme titer (U/ml) and specific activities U/mg (of protein) derived from T. ressei 
Qm9414 and P. funiculosum. The activities presented are the mean values of two separate measurements. The standard deviation for above 
mentioned values is less than 10%.

Enzyme 
Mixtures FPase Endoglucanase (CMCase) β-glucosidase Xylanase

U/ml U/mg U/ml U/mg U/ml U/mg U/ml U/mg

T. reesei 0.44 1.47 0.37 1.23 0.03 0.10 72.48 241

P. funiculosum 0.30 2.0 0.51 3.46 0.07 0.47 23.04 153

BG: β-glucosidase; FPase: Filter paper activity; CMCase: Carboxymethyl Cellulose Activity; U/ml: Units/mililitre (titer); U/mg: Units Per Milligram 
of Protein (specific activity).

Second reason for low yield of glucose from ABG is probably 
due to the high content of lignin (12.6%). It is well known 
fact that the hydrolytic performance of cellulolytic enzymes 
obstructs in the presence of lignin by nonproductive bonding 
between lignin and cellulases [6,26,27]. Above findings are in 
compliance with prior findings [28-30], which stated that partial 
delignification improves the hydrolytic performances and hence 
the sugar yield. We observed slightly higher glucose yield with 
P. funiculosum enzyme mixture in case of ARS, AWS (44.09%, 
43%) compared to ABG (36.5%). Similarly enzyme mixture 
derived from T. reesei showed decreased glucose yield by 11% 
for ABG as compared to AWS. However the overall glucose yield 
obtained from ARS & AWS was remained higher with all the 
enzyme mixtures because of its low lignin content as compared 
to ABG. This effect was seen prominent with T. reesei because 
of its very low β-glucosidase activity. Moreover, β-glucosidase 
though acts on the soluble oligosaccharides, it has high tendency 

to adsorb on lignin and get inhibited [31,32]. However, glucose 
yield was not much affected when enzyme mixture used from 
P. funiculosum. Though the glucose yield is affected when 
hydrolysis was performed with T. reesei enzyme mixture, it has 
been compensated for high cellobiose content in the hydrolysate 
obtained (Figure 3). Therefore, there was no significant 
difference observed in terms of total sugar yield (45-52%) when 
two enzyme mixtures used for hydrolysis for all three substrates 
(Figure 3). The glucose yield obtained here (27.75% & 36.52%) 
for ABG after 24hr were lower than Gottschalk et al. [33] who 
used culture blend obtained from T. reesei and A. awamori was 
used at 15FPU/g for the hydrolysis of pretreated bagasse and 
the yield obtained was 57%. This could be due to high FPU: BG 
content in the mixture(1:5), whereas mixtures we used in this 
study had much lower β-glucosidase for P. funiculosum (1:0.23) 
and T. reesei (1:0.07).

Figure 3: Hydrolytic improvement of fungal derived cellulases. Enzymatic hydrolysis of ammonia pretreated wheat straw using in house and 
commercial enzyme mixtures. Sugar production profile (A) effect of β-glucosidase on hydrolysis (B) effect of β-glucosidase on sugar profile 
using enzyme derived from T. reesei, P. funiculosum.
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As we have discussed above, higher glucose production 
in the cellulolytic reaction is possible when BG: FPase ratio is 
high [34]. For instance, this ratio was highest for P. funiculosum 
(1:0.23) and hence released higher glucose than T. reesei enzyme 
mixtures. On the parallel platform of BG: FPase ratio, we have 
observed another ratio called BG: xylanase for release of xylose 
from pretreated substrates. Enzyme mixture obtained from P. 
funiculosum shows high BG: xylanase ratio and release 61.46% 
xylose, which is higher than T. reesei (45.83%) as shown in the 
Table 3. The possible reason for this could be low BG: xylanase 
ratio of T. reesei enzyme mixture. Likewise glucose releasing 
study, the xylose release comparison was studied (Figure 3). We 
noticed that overall xylose release from ABG using T. reesei and P. 
funiculosum (45% and 61.46%) is remained higher and trend is 
followed by ARS and AWS respectively. Least xylose was released 
from AWS (34%, 38%) using T. reesei, P. funiculosum respectively. 
Although the differences were not significant this gives us idea 
that crude extract obtained of P. funiculosum has ample amount 
of hemicellulase activity. Regardless of initial xylan content 
of the substrates, higher the β-glucosidase to xylanase ratio 
of enzyme mixture, more effective was the xylose release. The 
xylose yield (61.46%) obtained after 24hr of hydrolysis here 
is more for ABG than 55.7% reported by Gottschalk et al. [32]. 
However, that can be a result of their higher FPU loading and/
or the pretreatment type. Maria P et al. [35], studied the ratio 
of β-glucosidase to xylanase and the high ratio of β -glucosidase 
to xylanase improved xylose yield. The relation between the 
β-glucosidase and xylosidase has been discussed by Krisztina 
Kovacs et al. [8] where, P. brasilianum showed high ratio of 
β-glucosidase to FPA and β- xylosidase to FPA than F-1663/B 
(inhouse produced) enzyme mixture. These high ratios of 
enzymes improve the overall xylose and glucose yield compared 
to commercial cellulases like Celluclast and Novozyme mixture. 
Overall, the crude extract of enzyme mixture obtained from 
P. funiculosum is more potent for glucose and xylose release 
than T. reesei after 24hrs of hydrolytic reaction (Figure 2). 
The possible reason could be that extra β-glucosidase helps to 
increase xylose yield using the enzyme mixture of P. funiculosum. 
This finding is in well agreement with Kristina Kovacs et al. [8] 
where, they have got 9% improvement in the xylose yield when 
additional β-glucosidase is supplemented. Similarly additional 
β-glucosidase in P. funiculosum gives improved yield of 10% 
for ABG and 17% for ARS. However, in case of AWS there was 
similar yield using both the enzyme mixtures and this might 
be explained by the structural difference for xylose bonding 
in AWS. Though the xylanase specific activity of P. funiculosum 
derived enzyme mixture is lower than that of T. reesei (Table 
2), the β-glucosidase to FPA and β-glucosidase to xylanase ratio 
is higher for former. These ratios of respective enzymes help P. 
funiculosum to release more xylose and glucose than T. reesei. We 
also observed that the higher release of xylose is compensated 
for lower release of glucose and vice versa for AWS, ARS and 
ABG using enzyme mixture. Therefore, total sugar yield for all 

the substrate using respective enzyme mixture remains similar 
(Figure 3). Current study showed connection between cellobiose 
accumulation and its effect on the xylose and glucose release. 
This links the synergistic action of xylanases, cellulases and 
β-glucosidase needed for increasing total soluble sugar yield in 
the enzymatic hydrolysis.

Using different pretreatment of wheat straw
The ASTM analysis showed glucose content was varied for 

AWS, ARS, and ABG (67, 75 & 88% respectively). Therefore 
after hydrolysis, significant difference in glucose concentrations 
was observed using two different enzymes extracts. Moreover, 
10% caustic pretreatment for CWS, removed maximum lignin 
and hemicellulose and yielded comparatively pure cellulose. 
Nitrate pretreatment removed xylose equally compared to 
caustic pretreatment. These differences in physicochemical 
characteristics of biomass were found to be responsible for 
different sugar yields. CWS showed high glucose yield of 42.95% 
and 50.86% as compared to AWS (30.12% and 42.79%) and 
NWS (22.12% and 39.17%) using T. reesei and P. funiculosum. 
Xylose yield was similar for AWS and NWS (~38-42%) and for 
CWS it was slightly higher (50%) when P. funiculosum used for 
hydrolysis and this might be due to its high β-glucosidase and 
least lignin content of the CWS. Together it was reflected in the 
highest hydrolysis for CWS (51.14% and 55.46%) compared to 
NWS (31.15% and 40%) and AWS (42.55% and 43.21%) using P. 
funiculosum and T. reesei (Figure 1). 

Much of work has been carried out where different enzyme 
sources are compared using single substrate [32,36] but our 
study provides insight into the two different enzyme preparation 
on three different substrates and pretreatments. It showed 
that how different substrates with the same pretreatment 
undergoes hydrolysis to give similar yield of sugars using 
different enzyme preparation. Also single substrate followed by 
varied pretreatment showed hydrolysis up to different extent. 
Therefore we have successfully showed that the pretreatment 
is a most important factor which decides biomass digestibility 
(hydrolysis) and not the only feedstock.

Improvement in the potency of the crude culture 
β-glucosidase (pfuBG) from bacterial source was added in 

to the crude culture obtained from P. funiculosum and T. reesei 
to meet β-glucosidase deficiency. FPU: BG ratios were used 
for this study were made equal to CTec2 (1:0.5) to elucidate 
the efficiency of pfuBG in improving the enzymatic hydrolysis 
of wheat straw. In Figure 3A, when the pfuBG were mixed to 
the crude culture obtained from T. reesei and P. funiculosum 
to hydrolyze pretreated biomass at 1% substrate loading, we 
observed an obvious improvement in saccharifying ability. 

When the ratio of FPU to BG were modified to 1:0.5 from 
1:0.07 (T. reesei) and 1:0.23 (P. funiculosum) by adding pfuBG, 
the hydrolyzing performance towards AWS was improved 
by more than 21% and 22% using T. reesei and P. funiculosum 
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respectively. The improved performance of these cultures 
was compared with CTec2, and we found that Ctec2 was more 
efficient and showed 77% hydrolysis against 62% by T. reesei 
and 63% by P. funiculosum enzyme extracts. This was probably 
due to presence of accessory proteins and/ or enzymes in the 
CTec2 could reduce the unspecific adsorption on substrate which 
improves the efficiency of cellulases which is in compliance with 
reported data of Yang B et al. [32]. Figure 2B focused light on the 
sugar composition obtained after hydrolysis; this study seems 
to be crucial for increase in total hydrolysis. Increase in glucose 
release showed overall hydrolysis enhancement and this was due 
to supplementation of β glucosidase. T. reesei and P. funiculosum 
showed 200% and 123% increase in glucose release. Xylose 
release was also found to be augmented by 141% and 240% 
using T. reesei and P. funiculosum respectively due to addition of 
β-glucosidase. The reason for this enhancement is explained in 
earlier section 3.3.3a.

Conclusion
In this study we have compared the cellulase and xylanase 

specific activities of P. funiculosum and T. reesei enzyme 
extracts and investigated their hydrolytic potential using 
physico-chemically different lignocellulosic materials. Enzyme 
extracts derived from P. funiculosum showed higher glucose 
yield than T. reesei derived enzyme, however this lower glucan 
yield is compensated for high cellobiose yield. Sugar profile 
gives idea of enzyme composition as low β glucosidase in T. 
reesei derived enzyme extracts affects glucose yield despite of 
having similar overall hydrolytic performance for both enzyme 
extracts. Pretreatment is a major factor which decides biomass 
digestibility as caustic pretreatment showed higher digestibility 
than ammonia and nitrate pretreatment irrespective of 
enzyme source. Lower β-glucosidase causes decreased glucan 
and xylan hydrolyzing capacity than enzyme extract of P. 
funiculosum. However, this lower glucan yield is compensated 
for high cellobiose yield using T. reesei derived enzymes. Finally 
supplementation of β-glucosidase showed improvement in 
glucose release and thus its hydrolytic performance.
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