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Introduction
Anthocyanins, one of the most important plant metabolites, 

are a group of naturally occurring pigments responsible for red-
blue coloration in most fruits and vegetables. Belonging to the 
“flavonoid family”, their structures (more than 500 in number) 
have been intensively elucidated [1,2]. Anthocyanins are of 
immense human interest due to their potential implications in 
maintenance of human health.

These pigments are present in different plant organs such 
as fruits, flowers and leaves etc [3]. Present exclusively in the 
vacuoles and for some species in the vacuolar compartment-
the anthocyanoplasts, their main sources are red apples, red 
grapes, berries (blackberry, blueberry, cranberry, raspberry, 
strawberry), pomegranates, vegetables (red cabbage, red 
onion, red radish) and purple maize in amounts ranging from 
20-1800mg/100g [4]. Flavonoids are a group of secondary 
metabolites which belong to the class of phenylpropanoids, 
They are primarily responsible for the red- blue colors found in 
many flowers, leaves and fruits [5]. Betalains (yellow-to-red) are 
nitrogen-containing compounds derived from tyrosine. They are 
also water-soluble and stored in vacuoles, present exclusively 
in Caryophyllalles. Carotenoids are isoprenoids and are found 
universally in plants and microorganisms, imparting yellow- 
to-red coloration to flowers and fruits, besides being important  

 
components of plant photosystems. Anthocyanins are believed 
to be functioning as photo protective pigments for the plant, 
and preventing oxidative damage. Anthocyanins are found to be 
induced via stresses such as UV radiation, pathogen attack etc 
[6].

The Structure and Biosynthesis: The Flavonoid 
Synthesis Pathway

Chemically, anthocyanins primarily possess anaglycone 
backbone, to which monosaccharides are attached at different 
positions, resulting in wide variety of flavonoids and colors 
(pale-yellow to blue) observed in nature. The aglycone forms 
of anthocyanins are categorized as “anthocyanidins”. A dozen of 
them have been described, but based on the different hydroxyl/
methoxy substitutes, 6 of them are widely present in nature, 
in fruits and vegetables [7]. The anthocyanidin is typically a 
flavilium ion (2-phenylbenzopyrilium). The 6 major classes 
of anthocyanidins are shown in Figure 1 namely cyanidin, 
pelargonidin, delphinidin and their methylated derivatives 
malvidin, peonidin and petunidin. These anthocyanidins differ 
at the hydroxyl/methoxy groups present at the 3’ and 5’ position. 
More the number of hydroxyl groups, the bluer the color. More 
the methoxy group addition, redder the color.
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Figure 1: The different types of anthocyanins.

Figure 2: The pH dependent interchangeable chemical 
transformations of anthocyanins.
Anthocyanins are extremely water soluble. However, they 

exhibit a very interesting chemistry in aqueous solutions, with 

4 major inter-convertible species, with varying relative amounts 
at a particular pH. At low pH, flaviliumcation is most prominent 
with a deep red color. As pH increases, they convert to colorless 
forms such as pseudobases and chalcones and at a pH more 
than 5; it changes to a blue colored quininoidal form Figure 2 
[8]. These anthocyanidins are further attached to sugars such as 
glucose, galactose and rhamnose, via α/β linkage exclusively at 
position 3 of the aglycon. Alternatively they can also be acylated 
by cinnamic acid, caffeic, ferulic, malic, oxalic and succinic acid, 
to name a few [9]. 

The biosynthetic pathway elucidating the major enzyme 
systems and chemical transformations are shown in Figure 
3. Synthesized cytosolically from phenylalanine, the enzyme 
systems have been hypothesized to form a “supra-molecular” 
complex, anchored in the endoplasmic reticulum [10]. Chalcone 
synthase (CHS) catalyzing formation of chalcones (Naringenin/
erodictoylchalcone) from coumaryl CoA or caffeoyl CoA along 
with 3 molecules of malonylCoA, is the first committed step 
of the pathway. Subsequently, they are isomerized to yield 
the typical flavanonesienaringenin and erodictoyl (Figure 3). 
Flavonoid 3’ hydroxylase (FHT), is a 2-oxoglutarate-dependent 
dioxygenase, which catalyzes the formation of dihydroflavanols 
such as dihydrokaempferol, dihydroquercetin and 
dihydromyrecitin from the flavanones, naringenin, erodictoyl 
and pentahydroxylflavanones, respectively. Alternatively as 
shown in Figure 3, dihydrokaempferol can by hydroxylated at 
3’ (F3’H) and 3’-5’ (F 3’5’H) to yield the twodihydroflavanols. 
Flavonoid 3’ hydroxylase and flavonoid 3’5’hydroxylase are CYT 
P450 enzymes and are necessary for cyanidin and delphinidin 
synthesis. 

Figure 3:  The anthocyanin biosynthetic pathway.
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(CHS: Chalcone synthase; CHI: Chalconeisomerase; F3’H: 
Flavanol 3’ hydroxylase; F3’5’H: Flavanol 3’5’ hydroxylase: DFR: 
Dihydroflavanolreductase; ANS : Anthocyanidin synthase).

The dihydroflavanols are further catalyzed by 
dihydroflavanolreductase (DFR), which leads to synthesis of 
leucoanthocyanidins. In some species of Petunia, DFR has been 
observed to exhibit extreme substrate specificity, rejecting 
dihydrokaempferol as substrate. They consequently lack 
the brick-red coloration of pelargonidin in their flowers [8]. 
Anthocyanin synthase (ANS) again a dioxygenase, finally leads to 
production of the coloredanthocyanidins. These anthocyanidins 
can further attach a sugar at the 3 position to yield the 
corresponding glucosides, catalyzed by glycosyltransferases 
which belongs to the UFGT family (UDP glycosyltransferase).

Many factors seem to operate at regulating anthocyanin 
accumulation in plants, the most important being environmental 
conditions such temperature, light intensity etc. Fruits of grape, 
strawberry and lychee have been reported to show enhanced 
anthocyanin accumulation by increasing exposures to sunlight 
[11-13]. Decreased anthocyanin accumulation was observed 
when grapes were shaded (light intensity decreased) at veraison 
[14]. Low temperatures have long been known to promote 
anthocyanin synthesis [15]. Studies in apples have shown that 
they accumulate more anthocyanin when irrigated with micro 
sprinkler system at sunset and sunrise [16]. An increased PAL 
and CHS activity was reported in berries grown at low night 
temperature [17]. Plant hormones such as ABA [14], ethylene 
[18] and ethephon [19] have also been shown to increase 
anthocyanin accumulation. Since it is known that anthocyanin 
synthesis continues even after harvest, postharvest storage 
conditions such as maintenance of low temperatures, apt carbon 
dioxide concentrations, also have a prominent effect on the 
anthocyanin amount and quality in the food source. 

Anthocyanins and Biological Activity
Anthocyanins are primarily antioxidants, exhibit free radical 

scavenging activity and are reported to manifest a range of 
bioactivities.

Anthocyanins and cardiovascular protection
Among one of the most studied effects of anthocyanins, 

they have been observed to have a “heart friendly” tendency. 
Atherogenesis can be attributed to MCP 1 protein release and 
anthocyanins have been shown to exert a protective effect 
against its secretion in human endothelial cells [20]. Similarly 
anthocyanins have also been shown to prevent release of VEGF 
(vascular endothelial growth factor), a pro-atherosclerotic factor 
in vascular cells [21]. In a different study, rats were treated with 
isoproterenol to induce post infarction remodeling and were 
fed with red wine which showed a protective effect on hearts by 
repressing hypertrophy-associated increased phosphorylation 
of protein kinase C (PKC) α/β II and by activating Akt/protein 
kinase B (Akt). Anthocyanins also are reported to have an effect 

on cholesterol distribution, protecting endothelial cells from 
CD40-induced proinflammatory signaling. It has been shown 
that the anthocyanin delphinidin decreases the extent of both 
necrotic and apoptotic cell death in cultured cardiomyocytes and 
reduces infarct size after ischemia in rats [4].

Anthocyanins and cancer
Chemo preventive properties have been reported extensively 

for anthocyanins. Different proteins related to cell cycle and 
cell death are attractive targets for anthocyanin based cancer 
prevention. It has been shown that red wine is capable of 
reducing proliferation of human colon cancer cell line and gastric 
adeno carcinoma [22,23]. Liu and team also reported prevention 
of human liver carcinoma cell line proliferation by raspberry 
extracts [24] the apoptosis inducing effect of anthocyanin 
glucosides have been reported in leukemia cell lines [25] and 
hepatoma cell lines [26]. Angiogenesis i.e. blood vessel system 
development in cancer cells, is a major factor responsible for 
proliferation of cancer cells. Its inhibition by black raspberry has 
been found to inhibit tumor development [27]. Even mutagenesis 
induced by methyl methane sulfonate and benzopyrene has 
been reported to be significantly inhibited by juices from 
anthocyanin rich fruits [28]. Further Marko and group (2004) 
demonstrated the inhibitory effect of anthocyanidins in human 
vulva carcinoma and colon carcinoma cell proliferation [29]. 
Clinical trials have shown that the consumption of pomegranate 
juice can significantly delay the reoccurrence and metastasis of 
prostate cancer following radical surgery or radiation therapy 
[30]. Berry (strawberry, raspberry, blackberry, blueberry etc) 
components, such as anthocyanidins, proanthocyanidins, 
flavonols, flavanols, stilbenoids, terpenoids, ellagitannins, and 
ellagic acid target oxidative and UV radiation stress-induced DNA 
damage and are known to act as chemo preventive agents [31]. 
Recently it has been reported that consumed blackberries alters 
innate cell trafficking in esophageal cancer [32]. A decreased 
expression of the proinflammatory cytokine IL1β followed with 
an increased expression of the anti-inflammatory cytokine IL10 
was observed. Additionally they also increased the expression of 
IL12, a cytokine that activates both cytolytic natural killer and 
CD8+ T cells. 

Other bioactivities reported
Anthocyanins have been shown to demonstrate an anti-

diabetic effect in rats by Jayaprakasam and group who 
observed stimulation of insulin secretion under the effect of 
monoglucosides of cyaniding and pelargonidin [33]. They have 
also been implicated in protection from hepatic injury [34]. 
Even ocular defects such as myopic conditions, are reported to 
improve after anthocyanin administration, however the use of 
anthocyanins for night vision improvement is still controversial 
[35]. Anthocyanins have even been reported to exert a beneficial 
effect on Alzheimer’s disease in a transgenic mouse model [36]. 
They have been reported to demonstrate anti-microbial and 
anti-oxidative effects [37,38].
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In vitro Production of Anthocyanins and their 
Elicitation

Anthocyanin production has been reported to be 
biosynthesized in vitro in a number of plant systems as elucidated 
in Table 1 [39-61]. The most extensively studied system is the 
Vitis vinifera, also known as the Cabarnet Sauvignon or the 
humble black grape. Strawberry culture systems have also 
been investigated for their in vitro anthocyanin production 
potential. The three most important factors that decide the 
anthocyanin biosynthetic capacity of a particular plant system 
are sugar concentration, temperature and light irradiation. 
Light irradiations in Perilla frutescens cell suspension culture 
have been observed to be a positive regulator for anthocyanin 
biosynthesis with a 1.6g/L anthocyanin yield obtained [38]. 
In a separate study on methyl jasmonate elicited Vitis vinifera, 
13.2 fold enhanced anthocyanin accumulation was reported 
when kept under continuous light irradiation [53]. Maier and 
team have reported that light irradiation provides stability 
to two small crucial proteins, Pap 1 and Pap 2, in Arabidopsis, 
which get degraded in dark conditions. Light stabilized Pap 1 
and Pap 2 further activate the transcriptional factors that induce 
anthocyanin pathway structural gene expression [62]. Low 
temperatures have also been observed to have a stimulatory 
effect on anthocyanin biosynthesis. However, as observed by 
[44] biomass accumulation was maximum at 30 °C, after which 
strawberry cell suspensions were shifted to 20 °C, at which a 
4 fold increase in anthocyanin content was observed. Similar 
phenomenon was also observed with Perilla frutescens cell 
suspensions, with maximum biomass at 28 °C, however with 
reduced anthocyanin synthesis. Maximum pigment volume 
could only be attained at 25 °C [42]. The most important and 
the most extensively studied factor, is the sucrose concentration, 
which seems to have a significant impact on in vitro plant 
anthocyanin synthesis. Increase in sucrose has been observed 
to a have a direct co-relation with increased anthocyanin 
accumulation [42,48,52,54,59]. Vitrac et al. [52] conducted a 

series of experiments to determine the involvement of calcium 
and calmodulin in sugar signal perception. They concluded 
that hexokinase, which phosphorylates the glucose, plays an 
important role in the sugar sensing. Calcium and calmudulin 
mediated activation of a cascade of protein kinase/phosphatase 
activities may help in transferring the sugar signal to the genomic 
encoded machinery for anthocyanin synthesis [52]. Elicitation 
strategies have also been employed to enhance anthocyanin 
biosynthesis, most predominantly in Vitis. Abiotic elicitations 
are frequent as opposed to biotic mode of elicitation. Methyl 
jasmonate is a fruitful elicitor for Vitis vinifera cell suspensions 
[54,57], with enhancement to the tune of 2.8-4.1 folds. Methyl 
jasmonate has also been reported to have a positive effect on 
anthocyanin production in Rosa hybrida [51]. They observed that 
although MeJA had a negative impact on biomass accumulation, 
but with highest frequency for color response in callus lines 
(97.25%). Pectins and ABA additions have also been observed 
to have a stimulatory effect on Vitis cell suspensions, in terms 
of anthocyanin production [56,55]. Precursor feeding mostly 
phenylalanine has also been reported to have a positive effect 
on anthocyanin accumulation. Repetitive phenylalanine feeding 
to strawberry cell suspensions led to an enhanced anthocyanin 
production, as opposed to cultures which were not fed with the 
precursor [46]. They observed an 81% increase over the non-
fed cultures and a 30% increase over a single fed culture. The 
authors, however, did not observe any growth inhibition, as is 
likely with higher doses of phenylalanine. Precursor feeding can 
also be clubbed with elicitation to modulate the anthocyanin 
biosynthetic pathway. Qu et al. [57] reported a 3.4 fold increase 
in anthocyanin yield in Vitis vinifera cell suspensions, when 
treated with 5mg/L phenylalanine and 50mg/L MeJA [57]. 
Reports on anthocyanin enhancement via biotic elicitations are 
scanty. Rajendran et al. [40] observed a 27.4% DW anthocyanin 
content in Daucus carota cell suspensions when elicited with 
mycelial extract of Aspergillusflavus. Cai et al. [63] reported a 7 
fold increase in resveratrol production in Vitis cultures from a 
biotic elicitor prepared from insect salivae (Manduca sexta). 

Table 1: Representative examples of in vitro anthocyanin production and elicitation studies.

Plant Elicitor/Manipulation in Nutrient Medium Anthocyanin Production References

Daucus carota

None 5.4%DW [39]

Elicitation with ME of Aspergillus flavus 27.3% DW [40]

MeJA 0.37% DW [41]

Perilla frutescens
Sucrose 60g/L >5.8g/L [42]

Light irradiation in agitated bioreactor 1.6g/L [38]

Strawberry

None 120mg/L [43]

Temperature (15-30°C) 270mg/L [44]

Addition of strawberry conditioned medium 1250µg/FCW [45]

L-Phenylalanine feeding 40mg/g dry cell [46]

Cleome rosa None 26 CV/g FW [47]

Camptotheca acuminata None 350µg/g FW [48]

Aralia cordata None 10.7% DW [49]
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Vaccinium pahalae MeJA elicitation 180mg/L  [50]

Rosa hybrida MeJA elicitation 97.25% color [51]

Vitis vinifera

150mM sucrose added at 7th day 100g/L [52]

Light irradiation+ JA 22.62 CV/g-FCW [53]

MeJA + Sucrose elicitation 4µmol/g FW [54]

ABA Addition 400µg/gFW [55]

Pectin elicitation 4mg/g DW [56]

MeJA elicitation+ phenylalanine precursor feeding 2.8 fold enhancement [57]

Ethephon elicitation 2.2mg/g DW [58]

Panax sikkimensis

None 7.0%DW [59]

None 199mg/L [60]

Elicitor+ precursor feeding 3 fold enhancement  [61]

Our team at CSIR-CIMAP has also been extensively 
involved towards in vitro production of anthocyanins since 
the past 15 years. The team has been working in the field of 
Panax biotechnology especially in unexplored Indian ginseng 
congeners from the North-East. One such ginseng congener i.e. 
Panaxsikkimensis from Sikkim, India has been explored for its 
in vitro secondary metabolite production. The team has been 
the first group in India to develop and patent an anthocyanin 
producing red colored cell line of Panaxsikkimensis that could 
co-accumulate secondary metabolites ieginsenosides as well 
as anthocyanins [64]. The anthocyanins stably accumulated 
in this particular cell line were found to be of the “peonidine” 
type [60]. Cell suspensions developed from this cell line 
was observed to be a potentially rich source of ginsenosides 
(77mg/L) and anthocyanins (199mg/L) at the shake-flask level 
[56]. Studies have been conducted to identify elicitors, combined 
with precursor feeding strategies that successfully led to 3-4 
fold enhancements in productions of anthocyanins from these 
cell suspensions. These cell suspensions exhibited enhanced 
biochemical activities of PAL and UFGT enzyme systems in a 
crude cell free preparation. Alternatively enhanced expression 
of these genes was also observed when these treatments were 
subjected to Real Time PCR analysis [61]. Bench level up scaling 
of these treatments in a 3-5 litre bioreactor is underway. 

Conclusion
Anthocyanins as a group of chemical compounds are pretty 

much well understood in terms of their biosynthesis, enzyme 
families and regulation. Reports are being constantly generated 
regarding novel bioactivities, different classes of antioxidants 
exhibit, in vivo. Production of anthocyanins via cell cultures has 
been investigated since a long time. Efforts to enhance their 
production have constantly been examined via elicitation and 
precursor feeding strategies. Effects of physical factors such as 
light, temperature and postharvest conditions are well defined 
in terms of anthocyanin accumulation. However, a definitive gap 
still remains in terms of mechanisms involved in sequestering 
and vacuolar compartmentalization, cellular trafficking of 
anthocyanins and their regulation. Answers to these key 
missing elements will contribute significantly in successful 

metabolic pathway engineering/flux diversion for plant 
pigment biosynthesis. Extensive biochemical characterization 
of putative “ molecular protein complexes” , determining their 
structures and use of bioinformatics tools to predict structure-
function relationship may also help to explore systems capable 
of synthesis of novel compounds, difficult to process chemically. 
Such information may also help in developing biochemical 
enzyme systems capable of customized plant pigment synthesis 
with “cellular editing” such as hydroxylation, de-glycosylation 
etc for desired chemical transformation. 
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