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Opinion

Cellulosic ethanol, which is usually generated from 
lignocellulosic material, is considered as an alternative 
to petroleum-based fuels in recent years. However, the 
commercialization of this bio-conversion process is still 
significantly hindered by the cost associated with cellulases in 
enzymatic hydrolysis [1]. Lignin is an amorphous and cross-
linked polyphenolic polymer and accounts for 20-30% of the 
plant cell wall. It can physically limit cellulose accessibility and 
adsorb enzymes irreversibly, thus it decreases the effectiveness 
of enzymes. In recent years, tremendous numbers of publications 
have been focused on lignin-cellulase interactions, especially the 
non-productive adsorption of cellulase to lignin. Due in part to 
the heterogeneity of lignin, the mechanism is not fully understood 
yet. Research on cellulase binding to lignin are usually explored 
from two different perspectives: lignin and cellulase. The former 
approach is often centered on the role of lignin in the interaction. 
With the help of modern spectroscopy and chromatography 
techniques, such as Fourier-transform infrared spectroscopy 
(FT-IR), gel permeation chromatography (GPC) and nuclear 
magnetic resonance (NMR), physicochemical properties of lignin 
and the correlations of these characterizations with cellulase 
adsorption have been analyzed accordingly. It was found that 
several functional groups of lignin are involved in the lignin-
enzyme interactions. 

First of all, phenolic hydroxyl groups of lignin could interact with 
cellulase by forming hydrogen bonding with amino acid residues 
in the enzymes and interfere  with the enzymatic hydrolysis of 
cellulose [2]. On the other hand, the presence of carboxylic acids 
group in lignin could reduce the negative effects of lignin on 
enzymatic hydrolysis of biomass by increasing hydrophilicity of 
lignin [3]. Lignin S/G ratio was also correlated with the lignin-
enzyme adsorption to some extent. However, the literature  

 
results are not all fully consistent. Most studies indicated that 
due to the higher affinity of the G unit over S units to cellulase, 
S/G ratio was negatively correlated with cellulase adsorption 
onto lignin [4]. While some other studies concluded that lignin 
with higher S/G ratio showed greater enzyme adsorption ability 
[5]. Other lignin features such as surface area and surface 
charge could also affect cellulase binding. It was reported that 
lignin with larger surface area led to increased cellulase binding 
[6], while others concluded that the surface area of lignin had 
limited influence on enzyme adsorption [7]. Surface charge of 
lignin also affected cellulase binding to lignin by electrostatic 
force [8]. Recently, influence of phenolic compounds on their 
cellobiohydrolase (CBH) binding was investigated with lignin 
fractions recovered by different organic solvents [9,10].

The latter approach seeks to elucidate the mechanism from 
the perspective of cellulase. Cellulase is composed of three main 
components: cellobiohydrolases (CBHs), endo-β-1, 4-glucanases 
(EGs) and β-glucosidase. In particular, CBHs showed notable 
interaction with lignin [10]. CBHs are made up of catalytic 
domain (CD) and a smaller carbohydrate-binding module (CBM) 
connected by a glycosylated linker peptide. Previous study 
reported that CBM-less or CBM-lacking cellulase could decrease 
the non-productive binding and may lead to novel means of 
reducing cellulose charges [11]. Prediction of binding sites on 
CBM of CBH by molecular docking showed that Lys 57 played 
a key role in interaction between lignin and CBM [12]. Other 
studies indicated that pH and temperature could also affect 
adsorption of cellulase onto lignin by changing hydrophobicity 
and electric potential of cellulase surface [13]. Selecting and/or 
developing engineered enzymes with less lignin affinity could be 
a feasible way to reduce non-productive adsorption of cellulase. 
Due to some contradictory results existing in the literatures, 
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there might be a long way to go to fully understand the 
mechanisms involved in the lignin-enzyme interactions. There 
are two main ways to overcome this negative lignin effects on 
cellulosic ethanol production: one is the pretreatment method 
which could reduce and/or modify lignin to have less binding 
ability to protein; the other way is by using protein engineering 
to obtain cellulase which exhibits higher affinity to cellulose 
than lignin.
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