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Introduction

Trehalose is a non reducing disaccharide composed of two 
residues of glucose joined through 1,1-α,α-glycosidic linkage 
[1,2]. This sugar is found in bacteria, fungi, plants, insects, and 
invertebrates, but not in vertebrates [3,4]. Humans have the 
ability to hydrolyze but not to synthesize treahlose. The main 
functions of trehalose are to confer protection against stress 
and to serve as fuel reserve [5]. The first recorded information 
of trehalose was in cocoons of Larinus beetles in 1681, and in 
1953, Leloir and Cabib elucidated for the first time the complete 
metabolic pathway of trehalose. Trehalose can be biosynthesized 
by five pathways. It can be produced by the trehalose-phosphate 
synthase/trehalose phosphatase pathway in yeast, bacteria, 
archaea, insects, and plants.

Archaea, like Hyperthermophilic archeae, Pyrococcus 
horikoshii, Thermococcus litoralis, Thermoproteus tenax can 
also convert glucose and UDP-glucose into trehalose using 
trehalose-synthesizing glycosyltransferase [6]. Through the 
TreY/TreZ pathway Sulfolobus and Mycobacterium can convert  

 
malto oligosaccharides into trehalose [2]. Malto oligosaccharides 
and maltose can also be converted to trehalose by the trehalose 
synthase pathway in some bacteria [7]. The fifth biosynthetic 
pathway converts glucose and glucose-1-phosphate in trehalose 
using trehalose phosphorylase in bacteria, yeast and fungi, for 
example Bacillus stearothermophilus, Thermoanaerobacter 
brockii and Copelatus subterraneus [6]. In face of the interesting 
properties of trehalose, its role and metabolism have been 
investigated since a long time. However, there are still questions 
to be answered. Recently, Arthrobacter was used as a model 
to analyze development switches caused by the environment. 
This is possible because of its resistance to stress, probably 
related to their pleomorphic behavior. Trehalose-6-phosphate 
synthase (otsA) of Arthrobacter is probably involved in cellular 
morphology, representing an adaptation of bacteria that survive 
in extreme environments [8]. 

The protective effect of trehalose on Rhodobacter sphaeroides 
has also been presented. It was shown that a trehalose matrix 
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is able to protect the centers reactions of photosynthetic 
protein complexes against dehydration, leading to a greater 
maintenance of its photochemical activity [9]. Saccharomyces 
cerevisiae, Candida albicans, and Candida Tropicalis were used 
as experimental models to show the ability of Trehalose-6-
Phosphate (T6P) to inhibit trehalose synthase (Tps1) activity. 
In this way, T6P reduced the trehalose synthesis that is directly 
related to the virulence of some pathogens [10]. The protective 
effect of trehalose on Aureobasidium subglaciale, a fungus 
collected on soil contaminated with radiation and heavy metals, 
has already been demonstrated. In this study, a strain with 
three fold higher trehalose production, due to overexpression 
of Tps1 and the deletion of acid trehalase (Ath1), showed 
greater resistance against heavy-metal and radiation than the 
control strain. This data leads to the conclusion that there is a 
relationship between trehalose accumulation and the oxidative 
stress response in Aureobasidium subglaciale [11]. Subheading: 
Biotechnology Applications of Trehalose More than a decade 
after the liberation of the use of trehalose in humans by the 
United States and the European Union, which classified trehalose 
as safe, the studies about this sugar are increasingly focused 
on its beneficial properties for humans [12]. Those properties 
are mainly related to the trehalose structure, specifically on 
the interaction between the two molecules of glucose and its 
function as a kosmotrope [13]. These properties are important 
for the protective roles against stress, as oxidative stress, 
heating and starving. Furthermore, trehalose is synthetized in 
a wide range of organism, other than humans, which lack TPS 
enzyme, necessary for trehalose production [5]. Since trehalose 
is able to stabilize the structure of biomolecules (proteins, 
enzymes, DNA) and macrostructures (lipid bilayer) and to avoid 
protein aggregation during denaturating conditions, it has 
been intensively investigated for application in the treatment 
of infectious diseases, caused by pathogens whose virulence 
depend on trehalose synthesis, neurodegenerative diseases and 
cancer [10,14]. On the other hand, some groups are developing 
methodologies to introduce trehalose in different areas, as 
cosmetics (development of bath oils, moisturizers, due to its role 
as protection against dehydration); pharmaceutical applications 
(as component in medicines to treat high blood pressure, due 
to its role to protects against osmotic stress) [14]. Trehalose 
can be found in some methods to produce and preserve dried 
vegetables and fruits, in the production of Swiss cheeses and as 
sweetener [15,16]. One of the problems faced during therapeutic 
treatment, which use drugs that need to be delivered inside the 
organism, is how to introduce this component without side 
effects to the organism and with high rates of absorption. An 
alternative for oral delivery and parenteral methods is the use 
of biodegradable microneedles. Some studies are focused in 
the use of trehalose during the creation of these needles due 
to its capacity of interaction with the biomolecules, producing 
a sugar glass layer, and then, protecting the structure against 
composition alterations during its development before their use 
in humans [17]. 

Due to its cryoprotective and preservative role, trehalose can 
be found in solutions of organs transplantation, development 
of vaccines, antibodies, and during skin treatment with anti-
inflammatory drugs, where trehalose is used to reduce the side 
effects, as cutaneous irritation [15,18]. 

Trehalose as a therapeutic candidate ready to enter 
clinical trials 

Trehalose also displays a number of remarkable qualities 
including the ability to protect the integrity of cells against 
desiccation, heat, cold and oxidation(5). Moreover, trehalose 
may act as a chemical chaperone, preserving protein structure 
stability, protein folding as well as reducing aggregation of 
pathologically misfolded proteins [19,20]. Oxidative stress, 
aggregation and proteasomal dysfunction have been considered 
key mechanisms associated with neurodegenerative disorders, 
including Huntington’s disease (HD) [21], Parkinson’s disease 
(PD) [22] and Alzheimer´s disease (AD) [23,24]. It was recently 
reported the treatment with trehalose was able to counteract 
the increase in reactive oxygen species (ROS), ubiquitinated 
proteins, huntingtin and activated caspase-3 levels induced by 
the inhibitor of proteasome activity epoxomicin. The authors 
also pointed out the valuable effects of this disaccharide in 
proteinopathies, as an autophagy enhancer, chemical chaperone, 
antioxidant and an interesting therapeutic candidate for testing 
in HD patients [21]. 

By using in vitro and in vivo models of HD, other studies have 
shown the trehalose was able to inhibit polyglutamine (poliQ) 
mediated aggregation [25,26]. Recent studies demonstrate that 
trehalose protects dopaminergic neurons in the striato-nigral 
pathway from the pathological symptoms induced by MPTP (eg. 
vessel regression and ischemia) in mouse models of Parkinson´s 
disease [27]. Other study currently highlighted the ability of 
the autophagy enhancer, trehalose to protect against A53T 
α-synuclein mediated dopamine degeneration in a rat model 
of PD [28]. Trehalose intake has increased levels of chaperone 
molecules, such as Hsp 90 and SigmaR1 along with autophagy 
in brains of model mice of Lewy body disease (LBD). It has also 
been reported in this study that oral administration of trehalose 
suppressed the levels of detergent-insoluble α-synuclein in 
mice [29]. As such, in Alzheimer´s disease, trehalose promotes 
the cellular clearance of the phosphorylated pathogenic tau 
protein [30-32]. In addition, cell treatment with trehalose was 
capable to alter vesicular trafficking, thereby decreasing the 
degradation of Alzheimer-associated Amyloid Precursor Protein 
(APP) in endolysosomal compartments and the secretion of 
amyloid-β peptide [33]. The role of trehalose in reducing Aβ 
peptide aggregation is still unclear, however a very recent study 
concluded that trehalose affects the conformation of Aβ peptide 
to form α-helical structure, which may prevent the formation of 
β-sheets and thereby aggregation [34].

 The autophagic effects of trehalose together with its anti-
apoptotic property on tumor cells and lack of toxicity on 
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normal cells has been recently used as a Potential neoadjuvant 
for antitumor drugs for treating several cancers [35]. Other 
medically property of trehalose include the suppression of the 
osteoarthritis (OA) [36], herpesviruses [37] and age-associated 
liver injuries [38] mainly through the elimination of oxidative 
stress, reduction of endoplasmatic reticulum (ER) stress and 
autophagic flux restoration [36].

Conclusion

Since trehalose’s discovery, this disaccharide has been widely 
studied due to its interesting and unique properties. It was 
formerly focused on the better understanding of the pathways 
of synthesis and its role in the microorganisms that synthesized 
it. In the last decade, research involving trehalose has increased 
focusing on its application in the food, pharmaceutical, and 
cosmetics industry. Based on the results obtained so far using 
different models, and the advance of new research techniques, 
more studies are on the way to find more applications of this 
interesting and versatile sugar.
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