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Introduction

Methylotrophy is an amazing lifestyle, which allows 
prokaryotic and eukaryotic microorganisms to use single-carbon 
compounds as the sole sources of carbon and energy. Specialized 
group within methylotrophs is represented by methanotrophs 
capable of oxidizing a greenhouse gas methane, whereas the 
majority of methylotrophic bacteria and yeasts use methanol and 
other methylated compounds for their growth [1]. The presence 
of natural sources of C1-compounds such as plants, biomass 
burning, volcanic activity, etc. is evidently responsible for the 
almost ubiquitous distribution of microorganisms implementing 
methylotrophic metabolism [2-5]. Being biological sink for toxic 
C1-compounds methylotrophs prevent their release into the 
atmosphere and decrease the impact (as greenhouse gases) to 
global climate. At the same time C1-utilizers are able to synthesize 
a wide spectrum of valuable products from these abundant and 
potentially cheap substrates [6,7]. Together with a well-studied 
metabolism, availability of genomic data and actively developing 
methods of metabolic engineering, this peculiarity makes 
methylotrophs an attractive instrument for biotechnologists. In 
the present review current directions and modern tendencies of 
biotechnological application of methylotrophs and their specific 
metabolic abilities are listed.

Biodegradation and bioremediation

The most obvious application of methylotrophic metabolism 
lies in use of corresponding bacterial degraders and their 
enzymes in processes of biodegradation of industrially 
produced C1-compounds and bioremediation of polluted 
ecosystems. Methylotrophic bacteria are usually capable of  

 
oxidizing methanol, formaldehyde and formate utilizing these 
substances without formation of undesirable by-products 
[8-10]. High phenotypic plasticity allows to methylotrophs 
occupy different (soil, water, sediments), even extreme habitats, 
colonize plants and animals [11,12]. These microorganisms are 
phylogenetically diverse and adapt to environmental challenges 
by tuning of metabolic modes, therefore strains from different 
ecological niches can be used for selection of starting platforms 
for further development of desired technologies and products 
based on single-carbon substrates [7]. Some C1-utilizing 
bacteria can effectively remove methylated amines, methylated 
sulfur compounds (dimethylsulfide, dimethyldisulfide, 
methanesulfonic acid, etc.) [5,13] and halogenated methanes 
(chloro, bromo- and iodomethanes, DCM) [4,14]. However, the 
latter metabolic possibilities are rather rare and likely represent 
a result of evolution under conditions of long selective pressure 
of specific C1-compounds [15,16]. The ability to mineralize C1-
compounds can be further improved by genetic engineering. 
For example, it was shown, that heterologous expression of 
methylotrophic genes encoding key enzymes of the ribulose 
monophosphate C1-assimilation pathway hexulose phosphate 
synthase (EC 4.1.2.43) and 6-phospho-3-hexuloisomerase (EC 
5.3.1.27), increase the efficiency of removing formaldehyde by 
bacterial strains and transgenic plants [9,17,18].

Besides C1-compounds some methylotrophic bacteria 
can degrade a variety of other organic toxicants. Pseudomonas 
esterophilus 27RD, Pseudomonas esterovorus 24RA utilize 
methyl- and ethyl-acetates [19]. Two strains of Methylobacterium 
populi (V2 and BJ001) were shown to destruct polyaromatic 
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hydrocarbons [20] and even toxic explosives, such as 
2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-
triazene (hexogen) and octahydro-1,3,5,7-tetranitro-1,3,5-
tetrazocine (octagen) [21]. Methylobacterium sp. GPE1 degrades 
a heterocyclic constituent of tobacco smoke carbazole [22]. 
Bacterial consortia, containing methylotrophic bacteria, were 
demonstrated to efficiently remove phenol [23] and also 
common soil pollutants methyl-tert-butyl ether [24,25] and 
trichloroethylene [26]. Genomic prediction of methylotrophic 
lifestyle, basing on the concept of minimal metabolic modules 
[1], constantly expands our understanding of distribution and 
environmental roles of methylotrophic bacteria. In particular, 
available genomic data of newly discovered poly (ethylene 
terephtalate)-degrading bacteria Ideonella sakaiensis 201-
F6 [27], suggest that this strain can also employ autotrophic 
methylotrophy.

Bioanalytics

Whole cells and enzymes of methylotrophs are also used 
in bioanalytics for detection and monitoring of the content of 
toxic C1-compounds in the environment (e.g., industrial gas 
emissions, wastewaters, and indoor air), drinking water, various 
products, foods, therapeutic drugs, and biological fluids. Highly 
sensitive and selective biosensor technology is an accessible 
alternative to the expensive and complex physicochemical 
methods of detection. Biosensors are hybrid devices containing 
a bioelement (immobilized bioactive substance), which defines a 
degree of selectivity, and a physical transformer (transducer). To 
date a number of biosensors and bioreporter systems on the basis 
of cells, enzymes and even specific cofactors of methylotrophs 
were designed for methanol, ethanol, dichloromethane, 
formaldehyde, mono-, di-, and trimethylamines, glucose, lactate, 
aspartam, n-butanol, benzyl alcohol [6, 28,29].

Another type of bioreporter systems is represented by 
genetically modified cells demonstrating visible signals in 
response to chemical stimuli. Such a system constructed by 
introducing into intact cells of the chloromethane destructor 
Methylobacterium chloromethanicum CM4 of a plasmid with 
the gene of the yellow fluorescent protein under control of the 
promoter of the chloromethane dehalogenase (EC 2.1.1.-) cmuA 
gene allowed marking of the natural sources of methyl halides 
by biofluorescence [30]. 

Biosynthesis and biocatalysis

Historically, methylotrophic microorganisms represent 
a widely used platform for bioproduction of chemicals for 
agricultural and chemical industry from non-sugar substrates. 
Methylotroph-based single cell protein (SCP) production has been 
active already in the 1980s, but has not yet exhausted its potential 
and can progress with use of new perspective strains [7,31]. 
Remarkable outcomes were reached for methane- and methanol-
based production of biopolymers - polyhydroxyalkanoates, 
which have a wide range of applications in packaging, 
medicine, or as textile and household materials, and represent 

a fully biodegradable environmentally friendly alternative 
to traditional petroleum-based plastics [6,32]. Stiffness and 
brittleness of natural product poly-3-hydroxybutyrate (PHB) 
can be overcomed by thorough selection of strains (≥3000 kDa 
for Methyloligella halotolerans C2 polymer vs. 50-200 kDa for 
PHB from M. extorquens) [6,33] and carbon sources ensuring 
the synthesis of high-molecular polymer or by functionalizing 
of PHB by addition of copolymers with other hydroxyalkanoate 
co-monomer(s), like 3-hydroxyvalerate or 3-hydroxyhexanoate 
[34]. Second way needs an addition of precursors increasing 
production cost, therefore as a less expensive scenario an 
artificial limitation of flux through ethyl-malonyl-CoA pathway 
(EMCP) was suggested, thus providing propionyl- and butyryl-
CoA precursors for synthesis of functionalized PHB [34]. 
Methylotrophic bacteria and yeasts are also commonly used as 
natural producers in methanol-based synthesis of a series of 
chemicals for pharmaceutic, cosmetic, perfume and chemical 
industry like aldehydes, formate, glycerol, hydrogen peroxide, 
pyruvate, citrate, amino acids (L-serine, L-glutamate, L-lysine), 
glyoxylate, gamma-aminobutyric acid, cadaverine, dicarboxylic 
acids from EMCP ((2S)-methylsuccinic and mesaconic acid), 
cofactors (FAD, GSH, ATP), homological methylotrophic and 
antioxidant enzymes, exopolysaccharides, bioprotectant ectoine, 
antioxidant carotenoid compounds [6,12,35-37]. The possibility 
of additional increase of the naturally high lipid content in cells 
of proteobacterial methanotrophs by genetic engineering makes 
these bacteria promising platform for biodiesel production from 
methane [7].

Heterologous expression of proteins represents another 
way of implementation of biotechnological potential of 
methylotrophs. At present, the most used methylotrophic 
expression systems suitable for investigations and production 
of industrial recombinant enzymes include well described 
yeast platforms of Pichia pastoris, Hansenula polymorpha, Pichia 
methanolica and Candida boidinii [35,38], which were subjected 
to adaptive laboratory evolution, resulting in populations with 
improved growth and production characteristics [39]. Examples 
of use of methylotrophic bacteria M. extorquens for methanol-
based expression of heterological proteins (green fluorescent 
protein, insecticidal protein Cry1Aa, a haloalkane dehalogenase, 
and Enterocin P) were also reported, but the achieved yields 
were not sufficient for commercial use. Facilitation of product 
recovery procedures by using of minimal media and relatively 
“clean” supernatant of methylotrophic cultures can be noted as 
advantage of methanol-based expression systems. However, the 
necessity to synthesize products for food and pharmaceutical 
industry often makes consider the use of toxic substrate as a 
shortage of these platforms and avoid it. Furthermore, bacterial 
hosts lack necessary posttranlational modification machinery 
and secretion machinery for these strains is not sufficiently 
studied [36].

Heterologous expression also opens new possibilities 
for synthesis of chemicals. Recently, this approach was used 
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for engineering of methylotrophic bacteria for production of 
2-hydroxybutyric acid, 3-hydroxypropionic acid, mevalonate, 
lactate and sesquiterpenoid a-humulene [7,36], and also for 
reversion of the native methanogenic pathway and addition 
of supplementary enzymes in archaeon Methanosarcina 
acetivorans for synthesis of acetate and L-lactate from 
methane [40]. An alternative way to gain benefit from using 
of simple C1-substrates is represented by so-called “synthetic 
methylotrophy” and implies an introduction of a minimal set 
of well studied methylotrophic modules/enzymes enabling 
methylotrophy into usual heterotrophic industrial platforms like 
E. coli and Corynebacterium glutamicum. Nowadays, the available 
instruments of this direction of synthetic biology include design 
of improved and even artificial variants of methylotrophic 
enzymes and pathways and also biosensors for monitoring of 
some C1-fluxes in heterologous hosts [7].

The ability of methylotrophic bacteria to form stable 
associations with non-methylotrophic microorganisms, 
supplying them with carbon sources [7], makes economically 
attractive the use of microbial communities for the synthesis 
of valuable products, which are not specific for C1-utilizers. It 
was shown, that in consortium with exoelectrogen Geobacter 
sulfurreducens and in the presence of humic acids the engineered 
Ms. acetivorans with reversed methanogenic pathway can 
convert methane into electrical current. Biotechnological 
potential of several platforms involving synthetic consortia of 
methanotrophs and non-methanotrophic methylotrophs or 
cyanobacteria for production of chemicals and biofuels is under 
analysis [7].

The last extensive area of application of methylotrophic 
bacteria lies in agricultural use for increasing of plant growth 
due to production of phytohormones (auxins, cytokinines, 
gibberelins) and siderophores, nitrogen fixation, ethylene 
production decreasing, solubilization of phosphorus, inhibition 
of plant pathogens and induction of systemic resistance in plants 
[11,12]. Interestingly, for some methylotrophic phytosymbionts 
the ability to increase production of furanoid compounds, 
responsible for fruit flavor, was also demonstrated [41]. 
Furthermore, the C1-utilizers decrease environmental stress 
by degrading toxic organic compounds and immobilizing heavy 
metals [12]. 

Recent unexpected discovery in methylotrophs of enzymes 
requiring rare Earth elements (REEs) - lanthanides for their 
functioning [42] suggest that they possess yet unknown specific 
mechanisms for sensing, transport and binding of these elements 
[7]. Identification of such systems can be potentially useful for 
engineering of new bioprocesses of REEs’ mining for industrial 
purposes basing on methylotrophic strains.

Conclusion

Broad functional diversity, unpretentiousness in terms of 
substrates and culture media, profoundly studied metabolism, 

cultivation technologies, and well-developed systems of genetic 
modification make methylotrophs increasingly popular agents of 
modern green biotechnologies. Conversion to valuable products 
of universally available renewable C1-substrates such as 
methane, methanol and carbon dioxide, is able not only reduce 
the cost of synthesis, but also decrease the harmful effects of 
these sustainable compounds on the ecosystem and the global 
climate by reducing their anthropogenic emissions. The use of 
C1-compounds, synthesized as by-products, as a raw material 
for other industrial processes, obviously represents an element 
potentially important for the development of technologies of 
non-waste production.
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