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Antifungal resistance

Over the past 30 years, the importance of antifungal drugs 
to the practice of modern medicine has increased dramatically. 
Antifungal drugs used for therapy of fungal diseases can lead to 
antifungal resistance. Based on a study conducted by National 
Institute of Health, in the United States during 1980-1997, 
mortality rates due to invasive mycoses have been increased 
by 3.2 fold [1,2]. In addition, high both mortality and morbidity 
caused by poor diagnosis, emergence of drug-resistance and 
lack of effective antifungal therapy are commonly produced 
[2]. Nevertheless, antifungal resistance has been described for 
all virtually antifungal agents in several pathogens, including 
Candida and Aspergillus species. Additionally, azole resistance 
in A. fumigatus is widespread with high geographic variance 
since the first report of itraconazole resistance in 1997 [3]. 
Moreover, Candida genera exhibit resistance against almost 
all antifungals available, especially against Fluconazole [4-7]. 
For instance, C. lusitaniae and C. guillermondii are intrinsically 
resistant to amphotericin B [8], while other ones such as C. 
glabrata or C. parapsilosis are more resistant to echinocandins 
[3,9]. More alarming are the recent global epidemics of C. auris, 
which displays high resistance to all classes of antifungal drugs,  

 
eliminating effective therapeutic options [10,11]. Similarly, 
resistance in molds against antifungals available in the market 
has been demonstrated by Aspergillus fumigatus and other 
Aspergillus species, and even genera as Scedosporium and 
Fusarium [12]. For example, A. flavus and A. terreus are able to 
tolerate higher concentrations of amphotericin B compared to 
other Aspergillus species, due to different response to oxidative 
stress [13,14]. 

In addition, some species of Cryptococcus, which are 
responsible for more than 1 million infections at high mortality 
rates (620 thousand deaths per year in sub-Saharan Africa), are 
resistant to echinocandins, limiting the options of treatment 
of polyenes that target ergosterol or its biosynthesis [15,16]. 
Mechanisms of antifungal resistance have been elucidated 
at molecular level for most of antifungal agents and fungal 
pathogens. However, molecular mechanisms that lead to 
antifungal resistance are very complex. These mechanisms 
include: decrease in effective drug concentration, alteration of 
drug targets, and metabolic “by pass” [3, 7, 17-20]. 

Decreasing of effective drug concentrations can be achieved 
by: Modification of diffusion mechanisms, mediated by the 
activity of several efflux transport, and, overexpression of the 
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targeted protein by modification of the promoter region of 
the gene, which increases drug resistance, offering a pathway 
for adaptive evolution and a tool for target identification. 
Overexpression of ERG11 has also been reported for azole-
resistant in isolates of C. glabrata, Candida parapsilosis, Candida 
tropicalis, and Candida krusei. However, the mechanism for this 
overexpression or its contribution to azole resistance in these 
species remains largely unknown [19]. Another mechanism of 
resistance, generally involved in the reducing of drug uptake, 
is the biofilm formation, associated with resistance to several 
drugs, including azoles, polyenes, and pyrimidine analogs [7].

These different mechanisms, which may be responsible for 
the intrinsic resistance of Candida species biofilms, include high 
density of sessile cells, growth and nutrient limitation, effects 
of the biofilm matrix, presence of persistent cells, antifungal 
resistance gene expression and increase of sterols on the 
membrane of biofilm cells [21-23]. Recent data showed that the 
cell matrix is involved in this process due to its ability to capture 
and store antifungal agents. This process has been clearly 
documented for fluconazole [22,24] and suggested for AmB in 
C. albicans [25].

Genetic modification of the drug target resulting in reduced 
affinity for drug is one of the most prominent mechanisms 
for antifungal resistance [3,20]. Several studies describe 
point mutations in the ERG11 (CYP51) gene, which encodes 
14-α-demethylase; and these amino acid substitutions alter 
protein structure, decreasing enzyme affinity for azole with 
the consequent impact of fungal susceptibility to fluconazole. 
A single instance of an ERG11 mutation has been reported in 
C. glabrata; a clinical isolate containing a missense mutation 
produced a cell membrane with no-ergosterol and displayed 
high resistance to fluconazole [26]. Alteration drug target has 
been reported for at least two classes of antifungal agents, 
including azoles and echinocandins. The targets of these two 
drugs are 14-alpha-demethyliase and Beta-1,3-glucan synthase, 
respectively. Lanosterol demethylase is encoded by ERG11 in 
C. albicans and Cyp51A in A. fumigatus. Mutations in ERG11 
producing non-synonymous substitutions of amino acids that 
are present in isolates of C. albicans resistant to azoles. These 
are numerous and show decrease in affinity of the target to 
antifungal azoles [27].

Metabolic By-pass occurs when the metabolic pathways are 
disturbed by loss or sharp decrease in specific cell functions. 
The metabolic by-pass can be compared with compensatory 
mechanisms in which the cells by-pass toxic effects exerted 
by some antifungal agents. For example, azole resistance can 
be measured by loss of function mutations in the ERG3 gene 
encoding a sterol Δ5,6-desaturase. If this gene is activated, the 
enzyme expressed converts 14-alpha-methylated sterols that 
arise from exposure to azoles into a toxic 3,6-diol derivative 
[28]. Fungi that are unable to produce this metabolite have azole 
resistance. Several studies have been reported of mutations that 

produce the loss of function of ERG3 and exhibit azole resistance 
[29-32]. However, due to a deficiency in ergosterol biosynthesis, 
these isolates may be less competitive than wild-type isolates 
under conditions found in the host. As a result of the loss of 
function of ERG3 in specific mutants, ergosterol is absent from 
cell membranes. In this way, mutants evade the toxic effect of 
AmB, which normally acts as a “sponge” for ergosterol to rapidly 
destabilize membrane functions [33]. Other mutations in the 
ergosterol biosynthesis pathway (ERG6, ERG24, and ERG2) lead 
to the same effect and also have a compensatory effect [34-36]. A 
mutation in the FUR1 gene that uracil phosphoribosyl transferase 
decreases the conversion of 5-Fluoro-Uracyl (5-FU), which is 
produced from the deamination of 5-Fluoro-Cytosyne(5-FC), in 
a toxic metabolite (5-FC- monophosphate). In this way, the toxic 
effect of 5-FC cannot be exerted [37].

Evolution of antifungal resistance

Evolution of resistance to antifungal drugs is of particular 
interest due to the increasing incidence of fungal infections that 
threaten health of patients and limited number of antifungal 
drugs with different targets [38]. During this transformation, 
microorganisms have adapted to compete and survive in their 
natural environments [39, 40]. At the species level, fungi may 
differ in their inherent ability to proliferate during stress 
induced by drug exposure, regardless of the acquisition of 
specific adaptive mutations, which is often referred to as 
tolerance [38,41,42]. At the population level, fungi can acquire 
specific mutations that reduce the inhibitory effects of a drug, 
creating resistance.

Frequency of which resistance is acquired varies 
dramatically depending on the type of antifungal used. In the 
case of resistance to azoles, this is the most prevalent, due to 
both fungistatic nature and strong selection pressure exerted on 
the survivor populations [42,43]. For echinocandins, a specific 
type of tolerance denominated paradoxical effect is observed, 
so that the fungal growth is restored at drug concentrations 
substantially that are higher than the Minimum Inhibitory 
Concentration (MIC) [44,45]. This mechanism is due in part 
to the transcriptional overregulation of the chitin synthases 
in A. fumigatus and C. albicans, once they are exposed to the 
echinocandins [44], facilitating mutations that confer fungal 
resistance.

Variations of susceptibility to antifungals occur also among 
closely related fungal species. Up to 20% of the strains of 
Candida glabrata are intrinsically resistant to azoles and even 
susceptible strains can quickly acquire resistance, leading 
doctors to recommend echinocandins as a first line therapy 
to treat a range of candidiasis [46,47]. Furthermore, it is not 
understood exactly how Cryptococcus neoformas can tolerate 
echinocandin concentrations that are generally inhibitory, 
given that the enzyme target (1,3) -Beta-D-Glucan synthase is 
highly inhibited by echinocandins in vitro, suggesting that the 
resistance mechanism would not be linked to the enzyme [48].
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The phenomenon of hetero-resistance is another example 
of variation in drug susceptibility within a population. 
For example, individual cells of Cryptococcus and Candida 
albicans are able of developing a progeny with phenotypes of 
heterogeneous resistance, with a small subset of the progeny 
with azole resistance [49-51]. This phenomenon allows to 
populations adapt to increasing concentrations of azoles in a 
gradual manner, restoring the original susceptibility after fungal 
cells are no exposed to antifungal drugs [50]. The molecular 
mechanism that governs this response in C. neoformans involves 
the acquisition of a disomy on chromosome 1, which shares 
the genes for the azole target ERG11 and the efflux transporter 
AFR1 [52]. Such phenomena have been observed in clinical 
and laboratory settings [50,53], which represents an intrinsic 
adaptive mechanism for survival during azole stress.

On the other hand, antifungal resistance has become a 
significant concern for clinicians who are responsible for 
caring for patients at high risk of suffering from invasive 
fungal infections. Resistance to current antifungal agents may 
develop secondary mechanisms of resistance acquisition once 
patients are exposed to these drugs. Recent trends in acquired 
antifungal resistance include increased resistance to azoles 
between non-Candida albicans and Aspergillus fumigatus 
isolates, and resistance to echinocandins in C. glabrata [54-
58]. In contrast, some fungal species are intrinsically resistant 
to certain antifungal drugs (eg C. kuresi to fluconazole, or C. 
lusitaniae to amphotericin B), while others have demonstrated 
microbial resistance to all clinically available antifungal drugs 
(eg Lomentospora prolificans and Fusarium solani) [59-61]. 
However, new species of fungi resistant to multiple available 
drugs (eg C. 

Conclusion

In this review, we exposed some aspects about antifungal 
resistance mechanisms and role of evolution in acquisition of 
resistance. Although the prevalence of antifungal resistance 
does not occur at the levels observed for some bacteria against 
different antibiotics, treatment options for invasive fungal 
infections are limited, and high-risk patients often have multiple 
co-morbidities, among which are included immunosuppression, 
which may limit the effectiveness of the therapy, even in the 
absence of resistance to antifungal drugs. In consequence, new 
treatment strategies are required to mitigate these resistances, 
and also overcome the adverse effects and toxicity, as well as 
drug interactions that are associated with current available 
antifungals, which may limit the effectiveness of the therapy.
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