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Introduction

Rumen is first chamber of the gastrointestinal track of 
ruminant where digestion of the plant fibres is taken place and 
solids are absorbed followed by reticulum site for waste removal. 
After reticulum, omasum and abomasum are like other non-
ruminants followed by small intestine. After a long time period 
from the first exposure to rumen, researchers started taking 
interest in rumen protozoa. After 1920, significant studies were 
started in identification, morphology and functions of rumen 
protozoa [1]. In addition to that it was observed that presence 
and absence of particular rumen protozoa affect factors like 
pH, ammonia concentration and also type and number of 
bacteria and these all factors affect digestion in ruminants [2]. 
Active participation of ciliate protozoa in digestion process 
of ruminants was earlier suggested by Tier and Hungate and 
Coleman et al., [3] and then was proven earlier by in vivo and in 
vitro studies [4-6] and also further supported till date by various 
studies relating to that [7-9]. 

Followed by most abundant bacteria, ciliate protozoa are 
the second most populated organisms in bovine rumen [10]. 
These ciliate protozoa are classified into mainly two groups 
viz. holotrichs and entodinomorphs (oligotrichs) based on their 
morphological characteristics. Also, they can be classified as 
soluble sugar utilizers, starch degraders and lignocellulose 
hydrolysers on the basis of their substrates. Larger protozoa 
generally ingest plant structural polymer and smaller one prefers  

 
storage polymers and sugars [8]. The holotrichs use soluble 
sugars and convert them rapidly into stored polysaccharide 
which is used during periods when sugars are not available 
and if provided with excess sugar they store starch until they 
burst [9]. Holotrichs are having cilia over their entire body and 
generally sugar utilizers while entodinomorphs are having 
cilia over discreet region and found to be attached to fibre, 
utilize starch as well as various plant materials [11-12]. Among 
these, the holotrich protozoa are represented by 15 different 
genera in the rumen of different animals and genera include 
Isotricha, Dasytricha, Buetschlia and Charonina which are widely 
distributed in the rumen of domestic and wild ruminants and 
hind gut fermentors. Entodinomorphs are represented by several 
abundant genera viz. Entodinium, Diplodinium, Eremoplastron, 
Eudiplodinium, Elytroplastron, Metadinium, Ostracodinium, 
Epidinium. Though, the composition of rumen ciliates varies by 
geographic regions, host species and their feed consumption. 
A large number of ciliates have been observed in different 
conditions but the count for a specific animal is 30 or fewer [10].

Role of Protozoa in Digestion

As discussed earlier, ruminants are herbivorous mammals 
having specific organ called rumen and function of rumen 
mainly includes conversion of feed materials into the form 
which can be easily utilized by animals as a source of energy. 
Ruminants are able to digest plant material like cellulose, 
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xylan, starch, sucrose etc. through diversified microbes present 
in it. Ingested feed is converted into volatile fatty acids in 
this rumen. Anaerobiosis is maintained by gases generated 
by fermentation viz. carbon dioxide, methane and traces of 
hydrogen. However, some amount of oxygen is entered in rumen 
which is utilized by some facultative anaerobes and anaerobic 
condition is maintained. As reported, rumen is having highly 
diversified microbial ecosystem. Anaerobic bacteria are most 
abundant followed by ciliate protozoa, anaerobic fungi and 
bacteriophages. Among this highly diversified microbial system 
some are dependent on others for nutrient supply required 
for them. But each of these microbes has significant fibrolytic 
activity. Among these fibrolytic microbes, protozoa contribute 
19-28% of cellulase activity of total rumen fibrolytic activity 
[11]. Apart from fibrolytic activity, rumen habituated protozoa 
are a good source of lipid as well and up to 27% from the total 
lipids is thought to be from holotrichs. Also, rumen protozoa 
are having much concentration of unsaturated fatty acids than 
other rumen parasites. Thus, they help to lower the sum of fully 
saturated fatty acids by incorporating them into their membrane 
phospholipids. Protozoa protein contains glutamic acids, leucine, 
lysine, and isoleucine as their backbone amino acids make their 
protein easily digestible than other rumen microbial protein 
[13]. 

Protozoa and rumen metabolism

There are several ways to analyse the role of ciliates in 
rumen metabolism. First is defaunation and refaunation in 
which animals are defuanated i.e. protozoa free animals are 
tested for studying the role of rumen function without changing 
the regular diet of an animal. Also, there are reports on 
defaunation and after that the animal was inoculated with only 
one species i.e. monofaunated to check the role of respective 
protozoan species [12]. There was a report of meta-analysis 
which was conducted to study the main effects of defaunation 
based on 23 in vivo studies comprising 48 comparisons [14]. For 

defaunation purpose, sodium lauryl sulfate, alkanes, synperonic 
NP9, calcium peroxide, copper sulfate etc. chemicals are used 
[15]. Apart from this method, second is rumen manipulation 
and third is isolation of newborn from their mother were used 
to defaunate the animal. Rumen manipulation is carried out by 
empting and subsequent washing the rumen by chemicals. In 
third method, newborns are separated from mother and other 
animals and are kept in isolated place [16]. There is a direct 
correlation observed between protozoa concentration and 
quantity of fermentation products. Whatever feed ingested by 
the ruminant, is enzymatically converted into VFAs (Volatile 
Fatty Acids) that plays a pivotal role in providing an animal their 
basic nutrition (http://www.fao.org). Dietary carbohydrates 
which are cellulose, hemicellulose, starch, soluble sugars 
and pectin, are degraded to acetate, propionate and butyrate 
like principal VFAs (Figure 1) [17-18]. The production of 
fermentation products is observed to be different in faunated 
and defaunated animals. Methane and ammonia, these two gases 
are mainly involved fermented products of metabolic activity 
by protozoa. As protozoa concentration decreases, bacterial 
degradation by protozoa simultaneously decrease resulted in 
decreasing ammonia which is probably the most consistent 
results observed due to defaunation. As the size of protozoa 
increases, its predation activity increases. According to that 
larger entodinomorphids having greater predatory activity than 
smaller holotrichs as predatory activity is fully dependent on 
the size of the protozoa. This ultimately shows a lower impact 
on ammonia concentration and protein flow of duodenal. In 
the case of methane, protozoa directly don’t produce methane, 
but they enhance the growth of methanogenic bacteria and 
consequently enhance methane production [14,19]. Apart from 
ammonia and methane, defaunation non-significantly affect 
lactate concentration. There is a higher lactate level report in 
defaunated animal as protozoa grab lactate more rapidly than 
bacteria, but this increased lactate level i.e. about 11% was non-
significant [20]. 

Figure 1: Schematic representation of carbohydrate metabolism in the rumen.
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Shifting from lactate concentration towards rumen pH, 
the rumen pH is shown increased after defaunation with diets 
containing a high level of concentrate, whereas it is reported to 
be decreased with diets containing a low level of concentrate. 
VFA concentration was observed to be decreased i.e. about 
5%. Decrease in VFA level clearly highlights the role of these 
ciliates in rumen metabolism and synthesis of VFA. Protozoa 
engulf exogenous fatty acids and divert more carbon toward VFA 
production for fatty acid synthesis and simultaneously increase 
VFA production. Protozoa has noteworthy role in butyrate and 
acetate production and bacterial butyrate and acetate production 
can’t compensate this much quantity after defaunation. This fall 
in concentration may be derived either because of inability to 
reach the level without protozoa or decrease in bacterial activity. 
However, propionate production by these ciliates is pretty less 
in quantity. So, credit of propionate production in rumen clearly 
goes to rumen bacteria. Moreover, increase in propionate 
concentration after defaunation is observed which may be due 
to increase in propionate producing bacteria after defaunaion. 
Along with these acids, VFA concentration is found to be 
decreased which shows that acid contribution to VFA production 
by protozoa is quite noteworthy. In addition to that, defaunation 
is generally correlated with decrease in organic matter digestion 
and this decrease enhances ultimately VFA production [21-22]. 

As observed, protozoa especially holotrichs have a strong 
preference for the starch. But they on the other side inhibit 
the growth of the starch digesting bacteria as there is a strong 
nutritional competition between protozoa and these bacteria. 
In addition to this nutritional competition, protozoa also 
selectively ingest these starch digesting bacteria attach on 
the starch granule. These starch digesting bacteria produce 
propionate, succinate and lactate. Succinate and lactate are 
further catabolized to propionate by other rumen bacteria. And 
so, decrease in these group of bacteria consequently decrease 
propionate production. Therefore, defaunation ultimately 
increase the production of these bacterial fermented products 
viz lactate, propionate and succinate. Along with these metabolic 
products, defaunated animals have significantly higher numbers 
of ruminal bacteria than control animals and the reason simply 
seem to be based on environmental niche for the bacteria when 
protozoa are’t there in the rumen [23]. 

Apart from effect of defaunation on metabolic products, 
absence of protozoa may affect rumen pathogenicity. As protozoa 
engulf pathogenic bacteria and lower the pathogenicity, its 
absence may raise rumen pathgogenicity. On the other side, 
defaunation may decrease pathogenicity depends on protozoa 
population. Hence more research is needed in this area of effect 
of defaunaation on rumen pathogenicity [24].

Fibrolytic activity of rumen protozoa

As reported till date, rumen protozoa are seizing significant 
enzymatic activities which contribute imperative role in 
digestion of ruminants. Enzymatic activity can be studied using 

diverse strategies viz. direct biochemical detection of specific 
enzymes from extract of mixed rumen protozoa or from culture 
of single protozoa, gene cloning of genes encoding specific 
enzymes and recently by sequencing of protozoan-derived 
expressed sequence tag (EST) libraries [25-26]. Metagenomic 
approach is reported mainly in microbial and metabolic 
functional study of rumen protozoa as difficulty of maintaining 
these organisms in axenic cultures and which avoiding the 
difficult culturing step [26]. As known protozoa are known for its 
fibre degradaing activity in the hosts and this fibrolytic activity 
had been determined and characterized using varied strategies 
as discussed previously like direct biochemical detection of 
specific enzymes in the protozoa derived extract. Another way is 
by molecular cloning to identify enzyme encoding genes directly 
and the most recent I.e. to sequence EST libraries. Early reports 
are there proving fibrolytic activities of these rumen protozoa 
like Howard et.al established the capacity of protozoan species 
to express their own enzymes for degradation of plant material, 
especially Epidinium caudatum was observed to be having this 
acivity. Similarly, E. ecaudatum had been identified for both its 
cellulase and hemicellulase activities. Clayet et al., [27] identified 
10 different enzyme activities for plant cell wall degradation and 
their catalytic activities include glycoside hydrolases.

Degradation of cellulose and hemicellulose

Rumen protozoa are having a range of fibrolytic 
activity involving glycoside hydrolases, and polysaccharide 
depolymerases which degrade polysachharides that is forming 
plant cell wall structure. A large number of studies of fibrolytic 
activity have been done on predominant hydrolytic bacteria as 
role of rumen ciliates in the degradation of plant cell wall polymers 
was controversial earlier. Various fibrolytic activities were also 
observed in rumen ciliates then after from single cell as well as 
in mixed culture [28-29]. It was believed earlier that cellulolytic 
activity of rumen ciliate is due to their intracellular bacteria. But 
afterwards it was proven that it could be both from cellullase 
activity of engulfed bacteria and also cellulase production of 
ciliates themselves. Coleman in 1987 reported cellulose activity 
of rumen ciliate, Eudiplodinium magii using sterile Medium and 
14C- labelled plant saccharides. Medium was defaunated and 
refaunated with Eudiplodinium magii and 14C- labelled cellulose, 
starch, glucose was used to track conversion of cellulose. The rate 
of release of soluble 14C-labelled compounds from phosphoric 
acid-regenerated 14C cellulose by protozoal broken-cells was 
measured. In that experiment, Coleman observed that 70% of 
the cellulose was digested in 48h and had an activity of 0.55 to 
3.3μg cellulose digested h-l (mg protein)-l. Cellulase activity of 
protozoa was further confirmed by measuring activity with and 
without antibiotics as in the presence of antibiotics bacterial 
cellulose activity was decreased [30]. Role of ciliates in total 
fiber digestion and in cellulose digestion was also checked by 
Coleman et al. in 1987 using artificial culture. Cellulase activity 
was checked using substrate CMC (CarboxyMethyl Cellulose) 
and change in activity was measured by altering parameters 
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like dilution rate and loading rate of grass substrate. CMCase 
activity in faunated and defaunated rumen culture using filter 
paper cellulose as substrate revealed that after defaunation, 
activity was decreased. At the end, it was concluded that the 
ciliates contributed about 19-28% in CMCase activity [31]. 
Defaunation of rumen ciliates has been showing decrease in 
cellulose and hemicelluloses degradation of about 20% in 
sheep in one study conducted by Jouany and Ushida in 1994 
[23]. Endoglucanase and xylanase activities of three rumen 
protozoa, Polyplastron multivesiculatum, Eudiplodinium maggii, 
and Entodinium sp. were compared qualitatively by zymograms 
and quantitatively by measuring specific activities against 
different polysaccharides. As reported previously, sheep were 
defaunated and then refuanated with 4-5 cells of one of above 
three protozoa. Sonicated protozoal suspension was used as a 
crude protein extract and protein concentration was measured 
using Bradford assay using BSA as a standard and CMC was used 
as substrate for CMCase specific activity. P. multivesiculatum and 
E. Maggii belonging to large Ophryoscolecidae showed much 
higher specific activities than the small Ophryoscolecidae and.... 
Entodinium species. Multiple endoglucanases activities were 
identified from above mentioned two large Ophryoscolecidae 
in parallel studies [32-33]. Metagenomics has been a promising 
approach and fastest advancing field in modern microbiology 
and more advantageous as >99% microbes from the environment 
can resist cultivation in laboratory. Metagenomic study of 
rumen microbes leads to a promising approach to identify 
novel enzymes with substrate specification including cellulose, 
hemicellulose, starch, kitin, peptides, etc. [34-37]. 

Degradation of starch 

Coleman reported the amylolytic activity from 14 rumen 
ciliate species individually by preparing cytoplasmic fractions 
from those species. He also reported this activity from two 
natural mixed populations from sheep rumen in 1986. 
Eremoplastron bovis is observed to be having highest activity for 
amylase followed by Diploplastron affine, Ophryoscolex caudatus 
and Polyplastron multivesiculatum grown in vitro on grass 
and whole meal flour. While Ostracodinium obtusum bilobum 
and Diplodinium pentacanthum are found to be having lowest 
activity. Almost all rumen protozoa are having amylase activity. 
However, concentration of amylase varies between species 
to species and found to be more than 20fold. Another enzyme 
maltase is also represented in all species which is less active 
than amylase [38-39]. In bovine rumen, amylolytic activity has 
not been well studied and till date only few reports on amylolytic 
activity of bovine rumen protozoa. In 2012, it was checked in one 
of the entodinomorphs which is Diploplastron affine from sheep 
rumen. Protozoal cell extract degrade starch to reducing products 
with the rate being equivalent to 2.4± 0.47μmol/L glucose per 
mg protein per min [40]. Similarly, from Eudiplodinium magi, 
amylolytic activity was checked previously in 2007. The crude 
enzyme preparation obtained from the bacteria-free ciliates 
degraded starch at a rate of 29.5 and dextrin at 19.4μmol 

released glucose/mg protein/h, respectively. These enzymes 
degraded starch into mainly maltose and maltotriose. Starch 
degrading numerous fractions is collected upon ion-exchange 
chromatography of a crude enzyme preparation. Partial 
sequences from two genes coding for synthesis of α-mylase 
enzymes were identified in a cDNA library of Eudiplodinium 
maggii. Gene 1 was of 1625bp length and the gene 2 of 1593 bp. 
They encoded enzymes of 505 and 431 amino acids, respectively 
and α-amylase in nature [41]. Ciliates engulf starch grains 
into vesicles and for some ciliates it takes few seconds to be 
completely filled with starch grains and some take few hours. It 
takes approximately 36hours to completely metabolize engulfed 
starch grains and if it is not given, they are died off. Some species 
can incorporate this engulfed starch in protein metabolism 
and in this case at least some part is mediated via intracellular 
bacteria [39]. 

Degradation of xylan

Large entodinomorphs are able to digest plant particles. 
Only Polyplastron and Eudiplodinium are found to digest xylan. 
Epidinium is insufficient in digesting xylan and also holotrichs 
have no activity against it [25,37]. 

Conclusion

Rumen protozoa are key organisms along with bacteria and 
bacteriophages in this anaerobic chamber. Fibrolytic activity of 
these difficult to cultivate organisms was studied previously. 
However, their specific growth requirement in liquid medium 
has limited understanding of their fibrolytic activity. Still 
many studies have proved role of these organisms in rumen 
metabolism and enzymatic activities. These ciliates are having 
significant role in rumen metabolism though they can increase 
methane production which is not eco-friendly in excess amount. 
Key fibrolytic activities observed in these ciliates are against 
starch, cellulose and hemicelluloses.
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