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Introduction

Lab digitalization 

The digitalization of laboratory infrastructures and 
processes, in which smart laboratory devices collect, store and 
interpret accumulating data, is currently an integral part of 
research done by both academic and non-academic institutions 
[1-2]. Not only the demand for the banishment of outdated paper 
notes from the laboratory is a motivator for these endeavors, but 
also the reduction of documentation and data analysis efforts that 
come along with every single experiment [3]. As a result, it saves 
time, productivity can be increased, and researchers can easily 
share accurately stored experiment data and results. As a logical 
consequence as well as to enable laboratory digitalization, smart 
mobile devices are currently taking their place in the laboratory; 
not only as a tool for imaging and documentation of experiments 
as well as monitoring of experiments independent from 
stationary desktop computers, but also as a powerful sensor that 
gains experiment data itself. The built-in camera of most smart 
mobile devices can serve as a collector for image data, whereas 
powerful image processing algorithms can interpret and process 
this data [4-5]. 

Colony growth applications 

The growth of microorganisms on agar plates is one of the 
most common used techniques to acquire information about 
the living microorganisms in a sample. The counting of colony 
forming units (CFU) on agar plates is an essential part of quality 
management in food industry and water quality labs [6]. Also, 
agar plates are widely used in a variety of research projects, 
examples including screening of soil bacteria for agriculture 
approaches [7] or antibiotics development [7-8]. Furthermore, 
the transformation efficiency of microorganisms is determined 
by cultivating the transformed cells on agar plates [9]. Observing 
the formation of colonies is also part in cancer research [10-11]. 

Colony counting 

Manual counting of CFUs on agar plates is a time consuming, 
difficult and monotonous work. To ease this work, plates are 
divided in several sections and only one section is counted. 
This causes errors due to the uneven distribution of the cells. 
Furthermore, it is very difficult to consistently decide, if there is 
a single colony or a cluster [12]. Therefore, systems to automate 
this counting process were developed. All these systems are 
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based on imaging techniques in combination with image 
processing algorithms. The systems can be divided in two types: 
semi-automatic and fully-automatic systems. Semi-automatic 
systems require user input to set certain parameters needed 
for the image processing, while fully-automatic systems are 
independent from user input. 

An example for a semi-automatic system is the software 
Clono-Counter which is designed to detect and count colony 
formations of cancer cells in six-well plates or flasks [11]. The 
parameters need to be adjusted by the user. To find suitable 
parameters, some experience is needed [13]. Ateş & Gerek [14] 
published a software which counts different types of bacteria 
colonies on agar plates. For this software, the user is asked to 
select three points on the boundary of the petri dish to mark 
it for the algorithm. Another example for a semi-automatic 
counting system is the software Open CFU [12]. It is designed to 
detect circular objects like colonies on agar plates. 

Fully-automatic systems mostly include a fixed setup used for 
the image acquisition. An example for this is the colony counting 
system which was published by Brugger et al. [15]. This system 
contains a static system for image acquisition to get an image 
with a defined illumination from a defined angle. The software 
described by Barber et al. [10] counts colonies of brain cancer 
cells in angular flasks. The system described by Dahle et al. [16] 
uses a flatbed scanner to analyze 12 petri dishes with colonies 
of mammalian cells at once. The recognition of colonies in the 

rim area is a serious issue for most of the described algorithms. 
A system to overcome this problem is shown by Chiang et al. 
[13]. The PetriJet Platform is able to fully independently handle 
a magazine of up to 20 petri dishes and monitor the contents 
of these dishes [17]. A commercially available system is the 
Proto COL 3. This system is able to recognize ten different types 
of bacterial and fungal colonies [18]. It was also evaluated for 
Group A. streptococcus counting and applications in water 
quality laboratories [6,19].

All methods introduced above are using image stations or 
more complex systems to obtain a suitable image quality which 
is required for the adequate function of the specific algorithm. 
In the future, smartphones and other handheld devices will 
have their place in biotechnological and biomedical research 
[20]. Therefore, the image processing algorithm displayed in 
this work tackles this field and allows the colony counting with 
handheld devices. 

Algorithm

The developed algorithm is designed to count bacterial 
colonies on agar plates from images acquired by handheld 
devices like smartphones or smart glasses. To achieve good 
results from this algorithm the agar plate needs to be placed 
on a homogenous surface and the amount of light reflections 
on the plate surface should be as low as possible, especially in 
the center of the plate. Important steps of the algorithm are 
displayed in (Figure 1).

Figure 1: Example images of the process: (0) Input image; (1) Image converted to grayscale and selected area for cropping after plate 
detection; (2) Overlay image of all round objects detected by the iterative thresholding; (3) Groups selected by the DBSCAN algorithm, the 
blue colonies represent the single colonies used for further processing; (4) Colony clusters separated using the Hough transformation; (5) 
Results Image: red: single colonies, blue: single colonies found in the rim area, green:

The algorithm can be divided into five major steps (Figure 
2). The first part includes the recognition of the plate that is 
followed by finding the optimal binarization threshold (part 
two). Subsequently, the single colonies and colonies in clusters 
are defined (part three), which leads to the splitting of the colony 
clusters into single colonies (part four). In the last part (part 
five), the algorithm locates previously missed single colonies. 

In the first step the input image is converted into a gray scale 
image and a Sobel operator is applied to highlight the edge of 
the agar plate (Figure 2, No.1). Then a simple image statistics 
(SIS) thresholding is performed to obtain a binary image. 
Afterwards an object detection is performed, which means 
that pixel in the Moore neighborhood are grouped to objects. 
In a next step, holes in these objects are eliminated. If there is 
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an object which contains at least 2% of all pixels in the image 
and has an eccentricity lower than 1.5, this object is treated as 
being the plate. If more than one object fulfills those criteria, the 
biggest one of them is used. In the case that no such object is 
found, an iterative thresholding procedure is started. The initial 
binarization threshold is 40 and is lowered in each iteration by 
1. In each iteration object detection is performed looking for 
the same criteria as before. If there is no suitable object found, 

the algorithm is terminated. In the next step, an erosion is 
performed on the plate object to remove potential artifacts from 
the binarization process. Now the border of the plate object is 
determined, and the original grayscale image is cropped (Figure 
1, No.1). In the last step, all pixels outside the plate object are set 
to 0 (black), thus eliminating the 113 background. The resulting 
image is in the following named “colony image”. 

Figure 2: Algorithm Flowchart: (1) Preprocessing, image cropping and background elimination. (2) Find optimal 116 binarization threshold. 
(3) Determine single colonies and colonies in clusters. (4) Split clusters into single colonies. (5) 117 Find missed single colonies.

Figure 3: Examples of iterative thresholding. Top row: Binary images created by using the binarization threshold 39, 48, 60 (left to right). 
Bottom row: Detected round objects with an eccentricity below 2 from the image above. The pixel sum of round objects is 4500, 10800 and 
5100.
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In the second section of the algorithm (Figure 2, No.2), an 
iterative threshold is applied to the colony image. The value of 
the brightest pixel is used as a start threshold and after each 
iteration the threshold is lowered by one. The resulting binary 
image is used for object detection (Figure 3). All detected objects 
with an eccentricity below 2 are classified as “good objects” 
and all other objects are classified as “waste objects”. In each 
iteration, all good objects, the sum of pixels of all good objects 
and the sum of pixels of all waste objects are stored. The iteration 
process ends as soon as the sum of waste pixels reaches 90% 
of all pixels of the plate. The previously stored good objects are 
used for finding missing colonies in section 5 of the algorithm. 
An image of all found good object is shown in Figure 1 (No.2). 
Due to the overlay of objects in the same spot from different 
iterations only the largest object is displayed. In the last step, the 
best binarization threshold is determined by using the threshold 
of the iteration with the highest sum of pixels in good objects. 

At the beginning of the third part of the algorithm, the best 
binarization threshold is applied to the colony image (Figure 
2, No.3). Afterwards an object detection is performed. This is 
followed by a size exclusion step, which eliminates objects below 
10 pixels to remove all binarization artifacts. In the next step 
the DBSCAN-algorithm is applied to the size and eccentricity 
values of all objects [21]. The aim of this step is to recognize 
objects which represent single colonies and to determine the 
size of these objects. A clustering is treated as successful if 
there is a group which fits the success criteria. An example for 
a suitable group is depicted as blue objects in Figure 1 (No.3). 
At the beginning, the following criteria were applied: an average 
eccentricity below 2.5 and a standard deviation of the size below 
30%. If no suitable group is found, the clustering is restarted with 
the eccentricity increased by 0.5 and the size standard deviation 

by 2%. After detecting a suitable group in the clustering process, 
two properties of this group are used for further processing of 
the image. The first is the average object size (AOS) of the group 
and the second is the average object eccentricity (AOE). From 
these two properties, the criteria for an object are set to count 
as a single colony or as a colony cluster. For a single colony, the 
object size needs to be between 30% and 300% of the AOS and 
the eccentricity must be below the sum of AOE and the standard 
deviation of the AOE. If both criteria are satisfied, the object is 
counted as a single colony. If eccentricity criteria not satisfied, 
but the size of the object is larger than the AOS, the object is 
counted as cluster. All objects which are not fitting the single 
colony, or the cluster criteria are discarded. 

In the fourth step, all cluster objects are further examined 
(Figure 2, No.4). First, all objects which have more than 70% of 
their pixels in the rim area, are excluded because these objects 
are mostly reflections. The rim area is defined as the 10% of 
the plate which are closest to the rim of the plate. To determine 
if a pixel is in the rim area, its distance to the center point is 
compared to the plate radius. If the distance is larger than 90% 
of the radius, the pixel is a member of the rim area. 

In the next step, an erosion with a window size of 3 is 
performed on the clusters and three different outcomes are 
handled. Outcome A is that the object size is decreased by 50%. 
Then this object is counted as noise and is discarded. Outcome 
B is the decomposition of an object into two or more objects. 
In this case, all objects are reevaluated, if they fit the single cell 
or cluster criteria. Otherwise (Not A or B), the erosion step is 
undone, and a Hough circle transformation is performed on all 
remaining clusters to determine the number of single colonies 
in these clusters. 

Figure 4: Steps of the Hough circle transformation scan: (0) Border pixel of the cluster object; (1) All detected circles within the object sorted 
by strength (the greener the stronger, the redder the weaker); (2) Remaining circles after elimination of overlapping circles; (3) Final objects, 
after elimination of circles outside object borders.

As the first step of the Hough processing, the average 
radius is determined from the AOS by assuming all colonies are 
perfect circles. Then an iterative Hough circle transformation 
scan is performed (Figure 4). The scan starts with an initial 
search radius set to one third of the average radius. All detected 
circles are stored in a list. After each iteration, the radius used 
for the search is increased by 1until it reaches the average 

radius. When the scan is finished, all detected circles are sorted 
by their percentage strength. This value shows how many 
matching pixels exist between the object border and the circle. 
Consequently, this represents the quality of the circle. This step 
is followed by three plausibility checks to make sure all circles 
actually represent a colony. First, all circles are checked if there 
is the center of another circle within the radius of this circle. 
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If this is the case, the weaker circle is discarded. In the second 
step, circles which share more than 50% of their area with other 
circles are discarded. Finally, a circle is discarded if at least 50% 
of the area of the circle is outside the cluster. The remaining 
circles represent the colonies within the cluster (Figure 1. No.4). 

In the last part of the algorithm all good objects gathered in 
part 2 are used to find missing single colonies, especially in the 
rim area of the plate (Figure 2, No.5). At the beginning all round 
objects are checked if they fit the single colony criteria defined 
in part 3 of the algorithm. All non-suiting objects are discarded. 
In a next step, all objects from different iterations which are 
in the same location are merged. The merging is performed by 
combining all objects in a binary image and performing a new 
object detection. As a consequence, only, the biggest object in all 
those positions is kept. Finally, it is checked for each remaining 
object if its spot on the plate is already occupied by another 
single colony or a colony cluster. If this is the case, the object is 
discarded. The remaining objects are added to the list of single 
colonies. An example for single colonies is shown in blue in 
Figure 1 (No.5). 

Material and Methods 

For all experiments in this work the Escherichia coli strain 
BL21 (DE3) was used. As media for all cultivations Lysogeny 
Broth (LB) media was used. One liter of the used LB-Media 
contains 10g tryptone, 5g yeast extract, 10g NaCl, and 25mg 
kanamycin. The pH-value was adjusted to 7.5. For agar plates 
15g/l agar was added to the LB-Media. For the preparation of 
the agar plates 20ml of LB medium with agar was transferred to 
a petri dish. 

The preculture were prepared using a heat sterilized 100mL 
shake flask containing 10mL of sterile filtered LB medium that 

was inoculated with 1ml of E. coli BL21 (DE3) cryo culture. The 
preculture was cultivated at 37 °C until an optical density of 
0.04 was reached. Afterwards different dilutions of the starting 
culture were prepared. In each case, 50μl of the dilution were 
put in the center of the agar plate and were dispensed using a 
Drigalski spatula. The plates were then incubated at 37 °C for 
24h followed by image acquisition. 

All images were acquired by a Samsung Galaxy S4 Mini 
smartphone camera with a resolution of 2.4 Megapixels. The 
plates were placed on a gray or black pad to achieve homogenous 
non-reflecting background. As illumination, the standard neon 
tube light in the lab was used. No additional light source was 
used. All images were taken free hand perpendicular above 
the plate. During the image taking, it was tried to avoid light 
reflection on the plate as good as possible. 

The algorithm was developed in C# and is part of the in-
house software “Graphic Analyzer”. For the validation of the 
algorithm results all images were also evaluated by hand. To 
make the counting easier and more reliable, it was performed by 
using a counting tool of the “Graphic Analyzer”. For this purpose, 
every colony on an image was marked with a dot. Red dots 
were used to mark single colonies and blue dots were used to 
mark colonies within a cluster. Afterwards all dots in the images 
were counted automatically by the “Graphic analyzer”. These 
results were correlated with the results of the algorithm. In a 
second step the “Graphic Analyzer” also matches the position 
of detected colonies from the algorithm and manual counting. 
This offers additional quality criteria to check if the colonies 
detected by the algorithm are real colonies and not artifacts. For 
the calculations, a normal desktop computer was used (CPU: 
Intel(R) Core (TM)2 Duo CPU T8100 2.10 GHz; Ram: 4 GB; 218 
HDD; Windows 7, 32 bit) 

Results and discussion 

Figure 5: Performance of the algorithm in comparison to manual counting. The blue dashed line represents the optimal results, which 
means that the number of manually and algorithm counted CFUs are the same. The red dotted line is a linear regression between the 
manual counted and algorithm counted results. This regression gives a slope of 1.17, while 288 the R² is 0.98.
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Figure 6: Shortcomings of colony recognition in clusters in the rim area of the plate. (1) Manual counting with 171 counted colonies. 
Colonies marked with red dots are counted as single colonies, colonies marked with blue dots as colonies within clusters. (2) Image of the 
clustering result. The green object is part of the rim area and will be eliminated. This means, that all green clusters in this object will be 
eliminated as well, even if they are not part of the rim area. (3) Algorithm counting with 110 counted colonies, uncolored colonies were not 
detected by the algorithm.

Table 1: Mean percentage differences between manual counting and algorithm results, depending on the coverage of 291 the agar plate with 
colonies.

CFUs Per Plate Mean Difference [%] Mean Difference with Rim Pixel 
Elimination [%]

Mean Difference with 
Correction Factor [%]

Overall 11.88 36.89 8.4

< 50 8.07 68.33 10.35

50-150 14.2 13.01 6.77

> 150 16.99 10.75 7.16

To evaluate the algorithm results, 100 plates were manually 
counted as well as with the algorithm. A comparison of the 
obtained results is shown in (Figure 5). For plates with 50 or 
less CFUs, the results of the algorithm and the manual counting 
are very close to each other. Plates with more than 50 CFUs 
show a bigger difference between the results of the different 
counting approaches. Overall the meandifference between the 
manual and the algorithm counting is 11.88% (Table 1). For up 
to 50 CFUs the mean difference is 8.07%. Between 50 and 150 
CFUs per plate the difference is 14.2% and for more than 150 
CFUs it is 16.99%. In almost all cases, the value of the manual 
counts is higher than the algorithm results, especially on plates 
with high colony densities. The main reason for this is the failure 
of the algorithm to detect clusters in the rim area. An extreme 
example is shown in (Figure 6). In this plate, a large number of 
colony clusters can be seen in the rim area in the bottom left 
part of the plate. Furthermore, even clusters which are located 
outside the rim area are sometimes connected with rim objects, 
which causes an elimination of those clusters. This effect can be 
recognized in the green rim object in Figure 6 (No. 2). Due to the 
strong artifact formation caused by light reflections, it is very 
hard to distinguish between these artifacts and clusters in the rim 
area. Another problem is to find clusters in joined objects from 
clusters and reflections. Unlike single colonies, clusters cannot 
be easily recognized by their geometrical shape. Therefore, the 
algorithm is not detecting/counting these colonies. 

Clusters which are not part of the rim area but connected 
with it, are eliminated in the process and therefore they are 
not recognized by the algorithm as shown in Figure 6. An 
improvement of the detection of those clusters increases the 
algorithm accuracy. A possible solution for a better detection 
could be the removal of rim area pixels, thus preventing the 
removal of the whole object (Figure 7, No.1-3a). This approach 
was applied to the same set of images. It improves the accuracy for 
plates with higher colony density, but also extremely decreases 
the accuracy for plates with low colony densities (Table 1). For 
plates with less than 50 colonies the mean difference between 
the 244 algorithm results and the manual counting increases 
from 8.07% to 68.33%. The main reason for this intense drop 
of accuracy is the insufficient elimination of binarization 
artifacts in the rim area (Figure 7, No.2b). Plates with low colony 
densities are more likely to have no or very few single colonies 
in the rim area. Therefore, a lower binarization threshold is 
selected during the determination of the best threshold (Figure 
2, No.2). As a result, no round objects are lost by joining them 
with growing binarization artefacts from rim area. This causes a 
strong formation of binarization artefacts in the rim area, which 
are only insufficiently removed in this approach. Due to the very 
difficult handling of this approach under real conditions it is not 
applicable to improve the algorithm accuracy in general. Only for 
special cases an improvement was observed. 

http://dx.doi.org/10.19080/AIBM.2018.11.555804


How to cite this article: Austerjost J, Düsterloh S, Schneider-Barthold C, Beutel S, Lindner P. RA Novel Image Analyzing Algorithm for Colony Plate 
Counting with Handheld Devices. Adv Biotech & Micro. 2018; 11(1): 555804. DOI: 10.19080/AIBM.2018.10.5558040032

Advances in Biotechnology & Microbiology

Figure 7: Alternative approach in which rim pixel of objects are removed instead of the whole object. (1a) Manual counting with 171 
counted colonies. Colonies marked with red dots are counted as single colonies, colonies marked with blue dots as colonies within clusters. 
(2a) Remaining cluster objects after rim pixel elimination. (3a) Algorithm counting with 140 counted colonies, uncolored colonies were not 
detected by the algorithm. (1b) Manual counting with 39 counted colonies. Colonies marked with red dots are counted as single colonies, 
colonies marked with blue dots as colonies within clusters. (2b) Remaining cluster objects after rim pixel elimination. (3b) Algorithm counting 
with 78 counted colonies, uncolored colonies were not detected by the algorithm. All colonies detected in the rim area of this plate are false 
recognitions caused by insufficient elimination of binarization artifacts.

An alternative solution to handle this systematic error caused 
by the rim clusters might be balanced by using a correction factor. 
For this a linear regression was performed, which achieves a R2 
of 0.98 and slope of 1.17 (Figure 5). The R2 of 0.98 indicates 
that this linear model is suitable to describe the systematic error. 
Therefore, the slope can be used as a correction factor and was 
multiplied with the algorithm results (Table 1). For plates with 
more than 50 CFUs the correction improves the accuracy and 
lowers the differences for 50 to 150 CFUs per plate to 6.77% and 
for plates with more than 150 CFUs to 7.16%. Below 50 CFUs 
per plate the difference is increased to 10.35% which indicates 
an overcorrection. For these low colony densities, there are very 
few clusters in the rim area, therefore this correction should 
only apply to plates with more than 50 CFUs. 

The correction factor is a valuable tool to improve the 
accuracy of the algorithm. But it is only useful if the colonies are 
evenly distributed on the plate, which is not the case if plates 
are not carefully prepared. Presumably, the correction factor 
needs to be separately determined for each type of experiment. 
Therefore, an improved detection of colony clusters in the rim 
area would be a huge advantage for this algorithm and the next 
step to do. The strategy introduced by Chiang et al., [13] in 
which the rim area of the plate is independently examined with 
special algorithms, is probably the most promising one. The 
implementation of an additional step in the algorithm, which 
would allow to detect and remove light reflections [22], could 
improve the detection of colony cluster in the rim area and also 
potentially simplify the image acquisition process. 

In addition to the total CFU count, the correct recognition of 
colonies in the algorithm must be evaluated as well. To do this, 
the same images were analyzed manually and with the algorithm 

to ensure no artifacts are counted as colonies. In the next step 
the positions of all detected colonies in both images are matched. 
It was tested, if every colony detected by the algorithm has a 
colony in the same position in the manually counted image. This 
test was performed for all 100 evaluated images. The algorithm 
achieves an overall matching rate of 99.46%. In images with more 
than 100 colonies the matching rate is 98.61%. The mismatches 
are mostly caused by variations in the cluster splitting between 
manual counting and the algorithm results. These results prove 
that the developed algorithm is very accurate in the detection of 
CFUs and has almost no false recognitions. 

Another important factor besides the accuracy is the time 
needed to count a plate. For 50 plates the time for the manual 
and the algorithm counting was monitored. While the average 
time for the manually-counted plates was 2 minutes, the average 
time for the algorithm counting was only 2seconds in average on 
a standard office computer.

Summary and Outlook 

The developed image processing algorithm was applied to 
images from E. coli agar plates. The images were acquired by 
hand using a smartphone without any additional equipment. 
The algorithm allows to detect the plates on the images and to 
count the colonies on the plates. The average time to process 
an image was 2 seconds on an office computer. These results 
were compared to manual counting of the colonies on the plate 
images. The algorithm achieves a mean difference between 
8.07% and 16.99% depending on the colony density on the plate. 

The main issue for the differences is clusters of bacterial 
colonies in the rim area of the plate. These clusters are very 
hard to distinguish from artifacts caused by light reflections. To 
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compensate this error, a correction factor from a linear model 
was introduced. With this correction factor the mean difference 
was improved from 16.99% to 7.16% for plates with high colony 
densities. But on the other hand, the mean difference was slight 
increased from 8.07 % to 10.35 % on plates with less than 50 
colonies. Therefore, the correction factor should only be applied 
on plates with higher cell density. 

Furthermore, 99.46% of all colonies detected by the 
algorithm were also recognized in the same position by manual 
counting. This shows that the algorithm is precise and very 
robust against false recognitions. 

The used correction factor is more an adjuvant than a 
solution. To improve the accuracy of the algorithm the cluster, 
recognition in the rim area needs to be improved. Furthermore, 
an additional algorithm part which detects and removes 
reflections from the image would improve the accuracy of the 
algorithm and ease the image analysis process. An integration of 
the developed algorithm into an app is displayed by Austerjost 
et al., [23], who also compares the performance of this algorithm 
to other available algorithms. 

The integration into an app is a necessary next step to 
make the algorithm accessible and useful for lab work. Such an 
integration. The presented work demonstrates that handheld 
devices in combination with a suitable image processing 
algorithm are applicable for counting colony forming units on 
agar plates. 

Acknowledgment 

The algorithm was developed within the frame of the 
smartLAB-initiative. We thank the Lower Saxony Ministery of 
Research and Culture and the Ministery of Economics for the 
financial support. This work was partially performed within the 
framework of the BIOFABRICATION FOR NIFE initiative, funded 
by the state of Lower Saxony, Germany.

References
1.	 Perkel JM (2017) The Internet of Things comes to the lab. Nature 

542(7639): 125-126.

2.	 Beutel S, Lindner P, Endres C (2016) Flexibel, Funktionell Und Digital. 
Nachrichten Aus Der Chemie 64(4): 428-430.

3.	 Giles J (2012) Going paperless: The digital lab. Nature 481(7382): 430-
431. 

4.	 Contreras-Naranjo JC, Wei Q, Ozcan A (2016) Mobile Phone-Based 
Microscopy, Sensing, and Diagnostics. IEEE Journal of Selected Topics 
in Quantum Electronics 22(3).

5.	 Coskun AF, Ozcan A (2014) Computational imaging, sensing and 
diagnostics for global health applications. Curr Opin Biotechnol 25: 
8-16. 

6.	 Hallas G, Monis P (2015) Evaluation of heterotrophic plate and 
chromogenic agar colony counting in water quality laboratories. 
Methods X 2: 415-422.

7.	 Alves GM, Cruvinel PE (2016) Customized Computer Vision and 
Sensor System for Colony Recognition and Live Bacteria Counting in 
Agriculture. Sensors & Transducers 201(6): 65-77. 

8.	 van Doorn LJ, Schneeberger PM, Nouhan N, Plaisier AP, Quint WG, et al. 
(2000) Importance of Helicobacter pylori cagA and vacA status for the 
efficacy of antibiotic treatment. Gut 46(3): 321-326.

9.	 Invitrogen (2013) One ShotTOP10 Competent Cells. Invit User Gudie 
280126: 1-16.

10.	Barber P, Vojnovic B, Kelly J (2000) An automated colony counter 
utilising a compact Hough transform. Med Image: 2-5.

11.	Niyazi M, Niyazi I, Belka C (2007) Counting colonies of clonogenic 
assays by using densitometric software. Radiat Oncol 2: 4.

12.	Geissmann Q (2013) Open CFU, a New Free and Open-Source Software 
to Count Cell Colonies and Other Circular Objects. PLoS One 8(2): 
e54072. 

13.	Chiang PJ, Tseng MJ, He ZS, Li CH (2015) Automated counting of 
bacterial colonies by image analysis. J Microbiol Methods 108: 74-82.

14.	Ateş H, Gerek ÖN (2009) An image-processing based automated 
bacteria colony counter. 2009 24th International Symposium on 
Computer and Information Sciences. 

15.	Brugger SD, Baumberger C, Jost M, Jenni W, Brugger U, et al. (2012) 
Automated Counting of Bacterial Colony Forming Units on Agar Plates. 
PLoS One 7(3) e33695.

16.	Dahle J, Kakar M, Steen HB, Kaalhus O (2004) Automated counting of 
mammalian cell colonies by means of a flat bed scanner and image 
processing. Cytometry A 60(2): 182-188.

17.	Vogel M, Boschke E, Bley T, Lenk F (2015) PetriJet Platform Technology: 
An Automated Platform for Culture Dish Handling and Monitoring of 
the Contents. J Lab Autom 20(4): 447-456.

18.	Pridmore A, (2012) Evaluation of the ProtoCOL 3 instrument for 
enumeration of bacterial and fungal colonies on agar plates, pp. 1-9.

19.	Frost HR, Tsoi SK, Baker CA, Laho D, Sanderson-Smith ML, et al. 
(2016) Validation of an automated colony counting system for group 
A Streptococcus. BMC Res Notes 9: 72.

20.	Gan SKE, Poon JK (2016) The world of biomedical apps: their uses, 
limitations, and potential. Scientific Phone Apps and Mobile Devices 
2(1): 6. 

21.	Ester M, Kriegel HP, Sander J, Xu X (1996) A Density-Based Algorithm 
for Discovering Clusters in Large Spatial Databases with Noise. Proc 
2nd Int Conf Knowl Discov and Data Min, pp. 226-231.

22.	T Xue, M Rubinstein, C Liu, W T Freeman (2015) A computational 
approach for obstruction-392 free photography. ACM Trans Graph 
34(4): 79.

23.	 J Austerjost, D Marquard, L Raddatz, D Geier, T Becker, et al. (2017) 394 
Beutel, A smart device application for the automated determination of 
E. coli colonies on 395 agar plates. Eng Life Sci, pp. 396-397.

http://dx.doi.org/10.19080/AIBM.2018.11.555804
https://www.nature.com/news/the-internet-of-things-comes-to-the-lab-1.21383
https://www.nature.com/news/the-internet-of-things-comes-to-the-lab-1.21383
https://onlinelibrary.wiley.com/doi/abs/10.1002/nadc.20164046793
https://onlinelibrary.wiley.com/doi/abs/10.1002/nadc.20164046793
https://www.ncbi.nlm.nih.gov/pubmed/22281576
https://www.ncbi.nlm.nih.gov/pubmed/22281576
https://ieeexplore.ieee.org/document/7265008/
https://ieeexplore.ieee.org/document/7265008/
https://ieeexplore.ieee.org/document/7265008/
https://www.ncbi.nlm.nih.gov/pubmed/24484875
https://www.ncbi.nlm.nih.gov/pubmed/24484875
https://www.ncbi.nlm.nih.gov/pubmed/24484875
https://www.ncbi.nlm.nih.gov/pubmed/26649275
https://www.ncbi.nlm.nih.gov/pubmed/26649275
https://www.ncbi.nlm.nih.gov/pubmed/26649275
https://search.proquest.com/openview/7e7159432adc291f40a91b11710e977e/1?pq-origsite=gscholar&cbl=52938
https://search.proquest.com/openview/7e7159432adc291f40a91b11710e977e/1?pq-origsite=gscholar&cbl=52938
https://search.proquest.com/openview/7e7159432adc291f40a91b11710e977e/1?pq-origsite=gscholar&cbl=52938
https://www.ncbi.nlm.nih.gov/pubmed/10673291
https://www.ncbi.nlm.nih.gov/pubmed/10673291
https://www.ncbi.nlm.nih.gov/pubmed/10673291
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/oneshottop10_man.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/oneshottop10_man.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17212832
https://www.ncbi.nlm.nih.gov/pubmed/17212832
https://www.ncbi.nlm.nih.gov/pubmed/23457446
https://www.ncbi.nlm.nih.gov/pubmed/23457446
https://www.ncbi.nlm.nih.gov/pubmed/23457446
https://www.ncbi.nlm.nih.gov/pubmed/25451456
https://www.ncbi.nlm.nih.gov/pubmed/25451456
https://ieeexplore.ieee.org/document/5291926/
https://ieeexplore.ieee.org/document/5291926/
https://ieeexplore.ieee.org/document/5291926/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308999/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308999/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308999/
https://www.ncbi.nlm.nih.gov/pubmed/15290719
https://www.ncbi.nlm.nih.gov/pubmed/15290719
https://www.ncbi.nlm.nih.gov/pubmed/15290719
https://www.ncbi.nlm.nih.gov/pubmed/25787804
https://www.ncbi.nlm.nih.gov/pubmed/25787804
https://www.ncbi.nlm.nih.gov/pubmed/25787804
https://www.synbiosis.com/wp-content/uploads/DWS-017-12-Synoptics.pdf
https://www.synbiosis.com/wp-content/uploads/DWS-017-12-Synoptics.pdf
https://www.ncbi.nlm.nih.gov/pubmed/26856815/
https://www.ncbi.nlm.nih.gov/pubmed/26856815/
https://www.ncbi.nlm.nih.gov/pubmed/26856815/
https://scientificphoneapps.springeropen.com/articles/10.1186/s41070-016-0009-2
https://scientificphoneapps.springeropen.com/articles/10.1186/s41070-016-0009-2
https://scientificphoneapps.springeropen.com/articles/10.1186/s41070-016-0009-2


How to cite this article: Austerjost J, Düsterloh S, Schneider-Barthold C, Beutel S, Lindner P. RA Novel Image Analyzing Algorithm for Colony Plate 
Counting with Handheld Devices. Adv Biotech & Micro. 2018; 11(1): 555804. DOI: 10.19080/AIBM.2018.10.5558040034

Advances in Biotechnology & Microbiology

Your next submission with Juniper Publishers    
      will reach you the below assets

•	 Quality Editorial service
•	 Swift Peer Review
•	 Reprints availability
•	 E-prints Service
•	 Manuscript Podcast for convenient understanding
•	 Global attainment for your research
•	 Manuscript accessibility in different formats 

         ( Pdf, E-pub, Full Text, Audio) 
•	 Unceasing customer service

                Track the below URL for one-step submission 
     https://juniperpublishers.com/online-submission.php

This work is licensed under Creative
Commons Attribution 4.0 Licens
DOI: 10.19080/AIBM.2018.11.555804

http://dx.doi.org/10.19080/AIBM.2018.11.555804
https://juniperpublishers.com/online-submission.php
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.19080/AIBM.2018.11.555804

	A Novel Image Analyzing Algorithm for Colony Plate Counting with Handheld Devices
	Abstract
	Keywords
	Introduction
	Lab digitalization
	Colony growth applications 
	Colony counting 
	Algorithm

	Material and Methods 
	Results and discussion 
	Summary and Outlook 
	Acknowledgment 
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1

