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Introduction
The genus Serratia

Serratia species of the family Enterobacteriaceae are rod 
shaped opportunistic Gram-negative bacteria of the c subclass 
of Proteobacteria and are motile, psychrophilic and facultatively 
anaerobic [1,2]. They are named after the Italian physicist 
Serafino Serrati. They are ubiquitous; inhibit a variety of 
different environmental niches such as; water, soil, plants as well 
as insects and animals with some associated with food spoilage. 
Some examples of Serratia include, S. fonticola, S. plymuthica, S. 
marcescens and S. grimesii [3,4]. In laboratory settings, Serratia 
species can grow on solid media at temperatures ranging from 20 
°C to 37 °C while, in liquid media from 5 °C to 40 °C with optimum 
pH values of 5-9. Serratia grow in many complex growth media, 
these include LB, PDA and NA [5-8]. 

The production of antimicrobial compounds by Serratia is 
carbon source dependent and highly induced in the presence 
of nutrients like organic acids and sugars and temperature-
regulated with enhanced production at lower temperatures since 
seasonal variations are a major factor in influencing bacterial 
metabolic activity [9,10]. Some strains of Serratia, in particular 
S. marcescens are human pathogens and the causative agents 
of contamination in hospital medical devices. S. marcescens  

 
associated with nosocomial infections cause pneumonia, 
septicemia, meningitis, endocarditis and urinary tract infections 
[11-13].

The red pigment prodigiosin 
For many years now, natural pigments from microbial 

sources have been studied for their various biological 
activities. These include anti-oxidants, antifungal and immuno-
suppressive properties. Prodigiosin is a red non-diffusible, 
water-insoluble pigment bound to the bacterial cell envelope of 
some strains of Serratia such as S. plymuthica, S. marcescens and 
S. rubideae. However, the pigment is soluble in organic solvents 
such as methanol [14-16]. Prodigiosin is an alkaloid secondary 
metabolite with colours ranging from dark red to pale pink 
notably on nutrient agar. The majority of reported S. marcescens 
isolates are of clinical origins and appear non-pigmented in 
comparison to environmental strains. It is strongly believed that 
it is temperature related since the optimal temperature for the 
production of prodigiosin is 28 °C [4,17,18].

The biosynthesis of prodigiosin is controlled by numerous 
environmental and physiochemical factors including 
temperature, oxygen and pH with maximum production yields 
achieved in the absence of light. The availability of nutrients in 
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media composition like carbon, nitrogen, inorganic phosphate 
and salts can influence the production of prodigiosin and a 
number of selective broth media are used for the production 
of the pigment. These include marine broth, nutrient broth, 
peptone glycerol broth and sesame seed broth [16,19]. The 
structure of prodigiosin includes three pyrrole rings with two 
linked together and the third ring attached to a methene forming 
a pyrrolopyrrole-ethene linkage [20,21]. The production of 
prodigiosin is controlled by a cluster of operonic genes called 
pigA-O [22].

Prodigiosin appears in the later stages of bacterial growth 
with no obvious physiological function. Nevertheless, studies 
speculated on the true biological functions of prodigiosin. 
These include, acting as an overflow for metabolic cellular 
waste products in the producing strains, contributing to surface 
adherence and enhancing bacterial dispersal while other 
studies claim that it might act as a sink for excess proline such 
as in Streptomyces [23,24]. The pigment displays anti-malarial, 
anti-protozoal, anti-fungal activities and a promising potential 
as an anti-cancer agent due to its potent apoptotic activity in T 
and B lymphocytes but low cytotoxicity towards normal cells 
[18,25,26]. Prodigiosin shows bacteriostatic effects with anti-
bacterial activity against numerous pathogenic strains. These 
include, E. coli, E. faecalis, S. pyogenes and Acinetobacter species 
[27,28]. Prodigiosin extracts purified from S. marcescens IBRL 
USM 84, Serratia marcescens B2 and S. marcescens B10 VKM 
are active against S. aureus, P. aeruginosa, B. subtilis, B. cereus, 
salmonella, Shigella, C. albicans, C. utilis, Cryptococcus as well as 
algal blooms [29,30]. 

The commercial biotechnological applications of 
Serratia 

Serratia produce commercially important compounds 
and enzymes such as lipases, serralysin, chitinases, nucleases, 
protease, haemolysin and amylases. Some strains of Serratia 
marcescens secrete chitinase B which is characterized by 
high thermal stability. It is strongly believed that enzymatic 
production in Serratia is due to their ability to inhabit various 
environmental habitats [2,31,3]. There is a great interest in the 
role of Serratia as cost-effective and environmental-friendly 
bioremediation agents. S. marcescens B742 synthesizes protease 
and chitosanase and hydrolyzes the proteinsin SSP protein 
produced by shrimp shell wastes into water-soluble protein 
hydrolysates [32,33]. Serratia isolated from soil and water 
samples encompass unique enzymatic activity and can degrade 
carboxylic acids (nitriles). Serratia sp. ISTVKR1 biodegradable 
activity include various chemical compounds and contaminants 
including organophosphorus pesticides, methyl parathion and 
p-nitrophenol [34]. Serratia strains isolated from petroleum-
contaminated sites in Norway coastline produce hydrocarbon-
degrading activity with great biotechnological potential in the 
remediation of oil and petroleum spills.

A novel non-pigmented strain of Serratia isolated from a 

river in India can hydrolyse urea to ammonia [11, 35]. There are 
numerous studies regarding the important role of Serratia as 
bio-control agents in agricultural crops management including 
strawberry, cauliflower and olives. S. plymuthica A30 shows 
potent activity against the bacterium pathogen Dickeya solani 
that cause blackleg and soft rot in potato [36-38]. Serratia 
strains used as environmental bio-control agents include, S. 
proteamaculans and Serratia sp. ANU101 which produce various 
compounds including the antifungals haterumalides which were 
the first polyketides to be discovered in Serratia [10,5,39]. 

The novel strain Serratia marcescens B4A produces potent 
antifungal compounds and inhibit the growth of insects and 
plant pathogens such as Rhizoctonia solani and Alternaria 
raphanin. The following strains of Serratia, Serratia marcescens, 
Serratia plymuthica, Serratia sp. SY5, Serratia fonticola AU-P3 
and Serratia fonticola DSM 4576T are plant growth promoting 
bacteria. They enhance crop yields and ecological balance in 
the agroecosystem by facilitating the uptake of nutrients from 
the environment. They also produce secondary metabolites 
such as siderophores and phytohormone and protect the 
plants against pathogenic infections [39-41]. Some strains 
of Serratia including, Serratia plymuthica HRO-C48 produce 
the halogenated secondary metabolite pyrrolnitrin which is a 
promising agricultural fungicide [42-44]. Serratia nematodiphila 
DSM 21420T is a biological pest control agent and produce 
potent insecticidal Sep proteins (SepA, SepB, SepC).

A full genome sequence of the strain showed gene clusters 
encoding enzymes contributing to antimicrobial production 
[45]. The following strains of Serratia including, S. plymuthica 
4Rx13, S. marcescens Db11, S. odorifera DSM 4582 and S. 
plymuthica PRI-2C produce volatile organic compounds VOCs 
including dimethyl trisulfide, sodorifen and methanethioland 
terpenoids [46,17,47]. These compounds have cytotoxic broad 
bacteriostatic inhibitory activity against various pathogenic 
bacteria and fungi, fruit flies and nematodes [48,49]. 

Serratia a novel source of antimicrobial compounds 
Serratia produce secondary metabolites with potent 

antibacterial, anti-fungal as well as anticancer activities 
[9]. Some strains of Serratia have a highly species-specific 
secretion-system (type VI) also known as T6SS which enables 
the production of broad-spectrum bioactive compounds. This 
system facilitates the production of antibacterial toxins and self-
protecting bacteriophage contained proteins that contribute to 
virulence against competitors and even related Serratia strains 
[36,50,51]. The production of bioactive secondary metabolites 
in Serratia is due to Quorum Sensing (QS) [52,17]. QS regulates 
gene expression in many Gram-negative bacteria in response 
to environmental selective pressure like the depletion of 
nutrients and influences population density by the production 
of N-Acyl Homoserine Lactone (AHL) molecules [29,53]. AHL 
are intercellular auto-inducer diffusible signaling molecules 
biosynthesized by the enzyme LuxI and regulates the production 
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of antimicrobials, antibiotics, enzymes and plant growth 
promoting compounds as well as contributing to motility, 
sporulation, virulence and biofilm formation [4,54]. 

There are various studies regarding the antimicrobial 
metabolites of Serratia. The culture supernatant of Serratia 
marcescens 2170 have strong cytotoxic activity against cancer 
cell lines [55]. Also, Serratia sp. strain American Type Culture 
Collection 39006 produces the broad spectrum β-lactam 
antibiotic Carbapenem. S. marcescens 274 and Serratia 39006 
secrete haemolysin, prodigiosin [56,24]. Some strains of S. 
marcescens such, as S. marcescens strain NSK-1and S. marcescens 
IBBPo15 produce the lipopeptide compounds, serrawettins 
synthesized by polyketide synthases. Serrawettins are broad 
spectrum antibacterial bio-surfactants and potent anticancer 
agents against T-cell leukemia and Burkittis lymphoma [17]. 
Recent research regarding S. plymuthica A153 and S. marcescens 
MSU97 revealed the production of the antifungal compound 
antioomycete, the anticancer agent haterumalide and the 
antibiotic andrimid. 

The latter inhibits the growth of Salmonella enteritidis, 
Yersinia enterolitica, Vibrio harveyi and Enterococcus [41,13]. S. 
grimesii and S. proteamaculans produce anti-cancer metabolites 
active against human larynx carcinoma [9]. Some Serratia 
produce the exoenzymes oocydin A and bacteriocins [54]. S. 
marcescens Db10 secretes the antibacterial toxins Ssp1 and 
Ssp2 and produces self-resistance proteins as a protection 
mechanism from its own toxins [42,37]. Strains of Serratia 
such as S. plymuthica, Serratia sp. strain V4 and S. plymuthica 
RVH1 produce zeamine antibiotics which have broad spectrum 
bactericidal activity against multidrug resistant bacteria and 
yeast. Zeamines cause membrane permeabilization through 
hydrophobic interactions with phospholipid layers and have 
cyto-toxic activities against human cancer cell lines [57-61].
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