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Introduction
Legionella is an intracellular pathogen that parasites host 

mononuclear phagocytes. There have nearly 59 species and 
70 distinct antigenic types of Legionella. Of the 50 species, 20 
are disease-causing agents [1,2]. Between the these species; 
Legionella pneumophila is an ethiological agent of Legionnaires’ 
disease and the most common species detected in clinical cases 
(80-90%), other species have also been reported to cause disease. 
It consists of 16 serogroups [3,4]. The majority of isolates in the 
CDC collection are serogroup 1 (sg 1), which are the primary 
cause of outbreaks (76.5% to 90%). Other Legionella species have 
also been reported to cause disease. The most common species 
after L. pneumophila is L. micdadei [5].

 
They are located water reservoirs, natural water sources such 
as lakes and rivers or in the biofilm bed or in the free water 
phase in artificial water environments such as ventilation 
systems, humidifiers, cooling kettles, spa centers, decorative 
water fountains, jacuzzi and shower heads, ice machines, 
vegetable humidifiers and dental units [6-8]. L. pneumophila 
can be transmitted to a human host by inhalation of aerosolized 
water from a contaminated man made water system. However, 
little is known about Legionnaires’ disease caused by these 
non-pneumophila species and their specific properties [9,10]. 
Legionella bacteria have become a microorganism since the first 
isolates, in order to detect the existence of these bacteria and 
to develop methods of fighting and to investigate pathogenic 
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mechanisms. However, the presence of the bacteria in water 
systems does not always cause outbreaks. Whether there is an 
outbreak depends on various factors, such as the diversity of 
serogroups, inhaled bacteria count, differences in immunity in the 
population, and the virulence of the bacteria [11,12]. Therefore; 
although preventing Legionella colonization in water systems is 
the priority, determining a type IV secretion system (T4SS) their 
virulence is also very important. 

The virulence factors characterized include genes required 
for the whole infection process, such as bacterial cell attachment 
to host cells, survival and intracellular replication and cell-to-cell 
spread. The products of genes involved in the initial attachment to 
host cells and early stages of intracellular infection include type 
IV pili, the 60 kDa heat-shock protein Hsp60, the poreformation 
protein RtxA, the macrophage infectivity potentiator Mip and the 
macrophage-specific infectivity protein MilA [13-16]. At the same 
time, L. pneumophila harbors the Legionella quorum sensing 
cluster (Lqs ), which includes genes encoding the autoinducer 
synthase LqsA, the sensor kinase LqsS, the response regulator 
LqsR, and a homologue of HdeD, which is involved in acid resistance 
in Escherichia coli. LqsR promotes host-cell interactions as an 
element of the stationary-phase virulence regulatory network 
[17-20].The aim of this study was to investigate macrophage 
infectivity potentiator gene, quarum sensing and pore formation 
protein gene in 15 enviromental and 10 clinical L. pneumophila 
isolates.

Materials And Methods
All consumables used in this study were obtained from 

Adıyaman University Scientific Research Projects Unit Project No: 
TIPFMAP / 2015-0006.

Bacterial isolates
10 clinical L. pneumophila isolates, two L. pneumophila 

serogroup 1 standard strain (ATCC 43111, ATCC 33152), 1 
Legionella bozemanii (ATCC 33217) and 1 Legionella micdadei 
standard strains (ATCC 33218) were obtained from collections 
at the National Public Health Institute, Respiratory Pathogens 
Reference Laboratory in Ankara, Turkey. 15 enviromental L. 
pneumophila were isolated from water systems. 

Culturing of bacterial isolates
All isolates to be used in the study were inoculated on the 

BCYE Agar medium by the reduction method. All inoculums were 
incubated at 37 °C and 5% CO2 for 3-4 days. At the end of this 
period, the colonies were stained with Gram stain method and the 
morphological characteristics of the bacteria were identified by 
light microscopy.

DNA extraction
A loopful of cells were suspended in 500 μl of TE buffer (10mM 

Tris , 1mM EDTA , pH 8.0 ) in a 1.5ml screw- cap microcentrifuge 
tube. The suspension was centrifuged at 15,000xg for 10min. The 

supernatant was removed and then the pellet was washed twice 
with 500 μl of TE buffer and then resuspended with 200μl of the 
same buffer. The samples were incubated in a boiling water bath 
for 20 min centrifuged, and supernatants containing DNA was 
transferred to clean microcentrifuge tubes and kept at - 20 °C until 
used [21].

Real time PCR reaction
Three virulence gene region was examined to evaluate type II 

secretion system, type IV secretion system and quarum sensing 
cluster including Mip, RtxA, Lqs and HdeD (15,17,22). Primer 
sequences for each gene region were shown in Table 1.

Table 1: Primer sequences for Mip, RtXa and Lqs

Targeted 
gene region Name/Sequence (5’to 3’)

Macrophage 
infectivity 

potentiator

 Mip ( Type 
II secretion 

system)

LpmipFp: GCAATGTCAAC AGCAA

 LpmipRp: CATAGCGTCTT GCATG

Poreformation 
protein RtxA 

(Type IV 
secretion 
system)

rtxA oligo 1 5′-CTGATGCTGCTACGGAACAC-3′

rtxA oligo 2 (5′-CCGCAGTCATTACACCTGCG-3′

Quarum 
sensing 
cluster

oLqsfo:GTATTAGGATCCAGAATAATTTGAGTACCCGCAG

oLqs re: CCGGCTCCATATGTCACAACTAAAAAAAATAG

oHdeD-fo (CCGCGTCCATATGGCTAATTCACAAG) 

oHdeD-re (TATTGGATCCCTAGAGTTTGGCCGTTTTTAC)

The 25 µl reaction mixture contained 12.5 µl of Lightcycler 
FastStart Reaction mix (including FastStart Taq DNA polymerase 
with buffer, dNTP mix, SYBR Green I dye, and 10 mM MgCl2), 
additional MgCl2 to achieve the optimal final concentration of 4 
mM, each primer at 0.5 mM, 1 U of uracil- DNA-glycosylase (UNG), 
and 5 µl of template DNA. Before amplification, the capillaries 
were kept at room temperature for 10 min to allow UNG to break 
down the possible contaminating amplicons and then were heated 
to 95 °C and held at that temperature for 10 min to deactivate UNG 
and activate the polymerase enzyme prior to the start of cycling. 
Amplification and steps were standardized according to reference 
literatures [15,17,22].

Reactions with purified L. pneumophila DNA at three 
concentrations (100, 20, and 4 ng per capillary) were included 
in each run to construct the standard curve. Quantification was 
performed according to the instrument manual by setting the 
noise band over the background fluorescence and determining 
the crossing points arithmetically with the use of two fit points. 
Melting points were calculated by the instrument. In order to 
normalize the run-to-run variations in the measured melting 
points, a melting temperature (Tm) ratio was calculated by 
dividing the melting point of each sample by the melting point of 
the 20-ng standard sample. 
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Results
A total of 25 L. pneumophila isolate (10 clinical and 15 

environmental ) , 1 standard L. pneumophila serogroup 1 
(ATCC 43111), 1 Legionella pneumophila serogroup 1 standard 
strain(ATCC 33152), Legionella bozemanii(ATCC 33217) and 
Legionella micdadei(ATCC 33218) standard strain was tested 
in this study. All samples were examined by Real Time PCR for 
type II secretion system, type IV secretion system and quarum 
sensing cluster using Mip, RtxA, Lqs and HdeD gene region. All 
clinical isolates were positive for the Legionella quorum sensing 
(lqs) cluster. Of 10 clinical isolates; 9 was positive for Mip gene 
region. This gene locus was not detected in 1 isolate. RtxA gene 
locus was positive 8 clinical isolates. Of 10 environmental isoltes 
All of Mip, RtxA, Lqs and HdeD gene region were positive in 
ten environmental isolates. While L. pneumophila serogroup 1 
standard strain ATCC33152 strain waspotisitve for all gene region, 
only Lqs region was negative in L. pneumophila serogroup 1 
standard strain ATCC43111 strain. Legionella micdadei was found 
positive for all gene region. While Mip gene region was negative, 
other gen regions were positive for L.bozemanii (Table 2).

Table 2: Results of Real Time PCR.

Legionella isolates
Type of gene regiom

Mip Lqs HdeD RtxA

Clinicalisolates
9 10 10 8

(L. pneumophila)n=10

Environmentalisolates
15 15 15 14

(L. pneumophila)n=15

L.pneumophila serogroup
1 - 1 1

1 standard strain (ATCC 43111),

Legionellapneumophila
1 1 1 1 serogroup standard strain(ATCC 

33152)

Legionella bozemanii (ATCC 
33217) - 1 1 -

Legionella micdadei(ATCC 
33218) 1 1 1 1

Discussion
Legionella pneumophila is the ethiological agent of 

Legionellosis. About 90% cases of this disease are due to 
this species, and the predominant serogroup (sg) 1 of L. 
pneumophila accounts for 84% of cases (1). The severity 
of bacterial disease depends on the virulence properties of 
microorganism. L.pneumophila has a many of the traditional 
bacterial determinants that are important for pathogenicity in 
other bacteria, such as lipopolysaccharide, flagella, pili, T2SS, 
T4SS and outer membrane proteins. T4SS translocates around 
200 effector proteins, including many proteins with eukaryotic 
similarity, into the host cell, where they act on diverse host cell 
pathway [19-21]. Among these region, L. pneumophila virulence-
associated response regulator was directly promote pathogen 
host cell interactions, such as phagocytosis, formation of the 

LCV, intracellular replication, and cytotoxicity, while delaying the 
entry of L. pneumophila into the replicative growth phase. These 
virulence factors characterized include genes required for the 
whole infection process, such as bacterial cell attachment to host 
cells, survival and intracellular replication and cell-to-cell spread.

The products of genes involved in the initial attachment to 
host cells and early stages of intracellular infection include type 
IV pili, the 60 kDa heat-shock protein Hsp60, the poreformation 
protein RtxA, the macrophage infectivity potentiator Mip and 
the macrophage-specific infectivity-protein MilA and quarum 
sensing interactions [12-15]. The genes required for bacterial 
survival and intracellular replication are a group of genes called 
icm (intracellular multiplication) . The L. pneumophila virulence-
associated response regulator is located within the Lqs cluster 
(lqsA-lqsR-hdeD-lqsS). This cluster includes genes encoding 
the autoinducer synthase LqsA, the sensor kinase LqsS, and the 
putative membrane protein HdeD. LqsR was directly promote 
pathogen host cell interactions, such as phagocytosis, formation 
of the LCV, intracellular replication, and cytotoxicity, while 
delaying the entry of L. pneumophila into the replicative growth 
phase. The clustering and orientation of the lqsA-lqsR-lqsS genes 
are conserved among different bacterial species [19,20].

The Lqs cluster harbors four genes (lqsA-lqsR-hdeD-lqsS) 
and is present in all L. pneumophila strains. The purpose of this 
study was to investigate macrophage infectivity potentiator gene, 
quarum sensing and pore formation protein gene that played 
important roles in various steps of the whole infection process in 15 
enviromental and 10 clinical L. pneumophila isolates. All samples 
were examined by Real Time PCR for type II secretion system, 
type II secretion system and quarum sensingcluster using Mip, 
RtxA, Lqs and HdeD gene region. All clinical and environmental 
isolates were positive for the Lqs cluster. Lqs gene region in L. 
pneumophila serogroup 1 standard strain (ATCC 43111) was 
not detected. There are some published data for the detection of 
Mip, RtxA gene in clinical and environmental samples. Mip and 
RtxA genes are commonly detected in clinical and environmental 
isolates. The results obtained from these gene regions were found 
to be consistent with the study done by Huang et al [5]. In the 
Legionella bozemanii standard strain, Mip and RTxA gene region 
was negative. All gene regions were positive in the case of the 
Legionella micdadei standard strain evaluated simultaneously in 
the study. There is no study of the cluster of Lqs in clinical and 
environmental samples. This study is the first study of a cluster of 
Lqs in clinical and environmental samples [5,11,20,22].

Conclusion
In our study Mip, RtxA and Lqs cluster genes were commonly 

detected in clinical and environmental samples. These gene 
regions can be used directly from clinical and environmental 
samples of L. pneumophila. In order to evaluate the pathogenicity 
factors encoded by these genes, there is a need for detailed studies 
involving enzymatic, cellular and protein activities.
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