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Editorial 
Genomes and interactions among gene products with other 

molecules are the physical fundamentals of biological systems. 
This is especially true for research in plants, which usually have 
complicated genomes and many important traits like yield, plant 
height, and stress tolerance are quantitative. Many quantitative 
traits are usually controlled by more than one Quantitative 
expression Loci (QTL) through the regulation of gene expression. 
The expression of a gene could be associated with a genetic 
variant far away from it, which is called trans-eQTL (expression 
QTL) or be affected by a local variant, which is named cis-eQTL. 
With a widespread existence throughout the plant genome, 
cis-acting genetic variants have been proven to account for a 
larger proportion of variation in gene expression. However, it 
is challenging for identifying cis-eQTL in the population with 
sequencing data because the power of eQTL mapping is either 
constrained by sample size or reduced by confounding factors. 
For organisms with a diploid genome, the information of Allele-
Specific Expression (ASE) which could provide more direct 
evidence of cis-eQTL is often ignored or discarded due to the 
unavailability of haplotype information and mapping bias. 

The next-generation sequencing provided a huge potential to 
study genome structures and gene regulation/interactions, and it 
helps to link complex traits and underlying biological mechanisms 
from the perspective of genetic variants and gene expression 
regulation. Recent years, the lower cost of next-generation 
sequencing enables a large amount of genotype information to be 
produced and various strategies have been proposed to control 
the mapping bias. ASE analysis can provide more direct evidence 
of the existence of cis-eQTL compared with traditional eQTL 
mapping. The power of ASE analysis depends on its internally 
controlled system, in which transcript abundance from different 
alleles is compared within individuals. In such a system, noises 
from the environment, batch effect or trans-acting variants would  

 
not affect the transcript abundance comparison since they exert 
the same effect on the expression of different alleles. RNA-seq can 
not only measure the abundance of transcripts but also provide 
information on genetic variants required to differentiate between 
paternal transcripts and maternal transcripts.

Gene expression could be affected by genetic variants and is 
a major way whereby genetic variants exert their influence over 
traits. Depending on the physical distance from the regulated 
genes, genetic variants could be put into two categories, cis-
genetic variation, and trans-genetic variation. Typically, cis-
genetic variation is located within 1MB each side of the transcribed 
region while tran-genetic variation is located much farther away 
(more than 5MB upstream or downstream of transcribed region) 
or even at different chromosome [1]. cis-genetic variation could 
affect the transcription initiation, rate, and transcript stability by 
altering promoter region, splicing region, or coding regions. Many 
publications have demonstrated a larger effect size of cis-genetic 
variation on gene expression [2] Contributing to the advancement 
of micro-array and next-generation sequencing, the variation of 
total read counts in the population could be used to map eQTL 
with eGWAS [3]. 

However, the power of eGWAS relies on the sample size and 
most times could be biased by many factors like environmental 
interference, batch effect, and population structure. Although 
those interference factors could be efficiently eliminated or 
well explained by specified model terms using sophisticated 
experimental designs and various statistical procedures were 
developed, some intrinsic characterizations of eQTL analysis still 
prevent them from being a powerful cis-eQTL detector [4-7]. For 
instance, the discrimination between cis-eQTL and trans-eQTL 
depends on the physical distance, which is difficult for people to 
find a cutoff to make an unambiguous separation. In addition, the 
effect of an allele on transcript abundance tends to be masked 
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by other molecular mechanisms like negative-feedback control. 
Rare variations which play an important role in gene expression 
usually fail to pass the criterion of Major Allele Frequency (MAF) 
and thus are excluded from the eGWAS study [8]. 

The deficiency of traditional eQTL mapping in analyzing 
cis-acting genetic variants could be made up by Allele-Specific 
Expression (ASE) analysis. In diploid organisms, ASE refers to 
the differential expression levels between paternal and maternal 
copies of the same transcript, distinguished by heterozygous 
sites within the transcript. The most attractive feature of ASE 
analysis is that the expression levels of two alleles are compared 
within the same sample, excluding extra trans-acting genetic 
and environmental noises that would rather increase variations 
among individuals in eQTL analysis [9,10]. Since the variation 
identified in ASE analysis only affects the transcription process 
of the local allele, we are endowed with more confidence in 
determining cis-eQTLs from trans-eQTLs. Research in cancer area 
also suggests that, besides common cis-eQTL, the ASE analysis 
has the ability to detect rare regulatory variation [11,12]. What 
is more, the technology has progressed from single gene qRT-PCR 
to the next-generation sequencing, which has scaled up the ASE 
analysis to the whole-genome level. One thing to be noted in ASE 
analysis is that the imbalanced expression between haplotypes 
could be due to epigenetic mechanisms like imprinting. Typically, 
extra experiments like family trio study would be performed to 
confirm the situation of epigenetic effect. 

Both the characterization of genetic variations and the 
calculation of allelic read counts could be biased by mapping 
reads to the haploid reference genome. As we know, the most 
fundamental step in next-generation sequencing analysis is 
mapping short reads onto the reference genome. During the 
mapping process with the haploid reference genome, reads 
overlapping indels positions tend to suffer from severe mapping 
bias. To be specific, the mapping process tends to keep reads with 
reference allele and discard reads with alternative allele, even 
with many aligner tools supporting gapped alignment. The same 
issue also exists for reads with SNP features. Combined with the 
random sequencing error nearby, the reads from variant alleles 
are prone to be discarded or aligned to a similar incorrect genome 
region [13,14]. The direct consequence of this intrinsic mapping 
bias would be underestimated reads with alternative alleles 
and this underestimation could, in turn, affect the downstream 
analysis like new variant discovery, genotype calling, and 
association research. 

In order to reduce the mapping bias caused by the universal 
reference genome, researchers came up with different strategies 
from the aspect of refining the mapping reference. The most 
straightforward way is to mask all known SNP positions with 
the ambiguity nucleobase ‘N’, eliminating the intrinsic difference 
between the reference genome and the alternative genome. Since 
both references reads and allele reads can map equally to the 
reference genome, ‘N-masking’ method can significantly reduce 
mapping bias [15]. However, it was reported that ‘N-masking’ 

suffers from low overall mapping success rate when there exists 
moderate mapping error. Moreover, as the number of masked 
sites for one read increases, the sensitivity of mapping could 
be severely affected especially for homologous regions, and 
the correct discrimination from homologous regions requires 
information from masked regions.

Dewey et al proposed to do the read mapping against 
ethnically concordant major allele reference genome. Although a 
significant improvement could be seen with Dewey’s method, the 
reference used was not able to represent all the variants found 
in the population. Another practical idea is to build personalized 
reference genome which was mainly applied to reduce the bias 
appeared in allele-specific mapping with RNA sequencing data 
and Chip-Seq data and has been further developed to improve 
the accuracy of genotype calling with WGS or WES data [14]. The 
construction of the personalized diploid reference genome was 
realized by modifying the custom haploid reference genome with 
known individual genetic variants (SNPs, Indels, and SVs). There 
are some well-known tools for this purpose. Vcf2diploid, as the 
first part of AlleleSeq pipeline, takes Variant Call Format (VCF) 
files with information of genetic variants as input and output 
two complete haplotype genomes one for paternal haplotype and 
the other for maternal haplotype. In the meantime, annotation 
files, splice-junction library and map files which record relative 
positions between paternal, maternal and reference haplotype 
are produced [16]. 

The shortcoming of vcf2diploid is the large size of the 
reference genome produced, which might not be so efficient during 
mapping and thus incompatible with some mapping aligner. Ref 
Editor is another tool designed to improve mapping accuracy 
through constructing personalized reference genomes. Compared 
with AlleleSeq which builds the whole allele chromosome, Ref 
Editor adopts a more efficient strategy which creates “mini 
chromosome”. For the homozygous wild-type allele, nothing was 
changed; for the homozygous mutant type allele, the nucleotides 
in the reference genome are edited; for heterozygous genotype, a 
short sequence overlapping the SNP or Indel position was created 
and named as “mini chromosome”. The original chromosome, 
along with the “mini chromosome”, is used as the personalized 
reference genome [14].

Despite the great advancement in both technologies and 
methods, little change has been made in ASE research when it 
comes to plant area; as ever, sequencing reads are simply mapped 
to the haploid reference and a naïve binomial test is used to 
prove the significance. All the above issues, combined with the 
complexity of plant genome, would introduce non-ignorable 
bias to the available discovery system, reducing the reliability 
of the identified genetic variants. Moreover, most research was 
limited to the general description of the global pattern of cis-
acting genetic variants, lacking association with phenotype and 
deep exploration of the underlying molecular mechanisms. This 
is mainly due to the complex genetic correlation between genetic 
variants and multiple causal variant candidates and partly due to 
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the high false positive rate in a single test. Therefore, developing 
new computational pipeline that are specifically for plants which 
would increase the accuracy in isolating functional cis-acting 
variants with ASE information and will integrate information 
from variation annotation, correlation structure, and phenotype 
to further characterize the biological function of identified cis-
eQTLs.
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