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Introduction
Bacteria encounter different changing environments but 

resist the environmental changes by developing an array of 
mechanisms which protect them from adverse conditions. During 
cold conditions, fluidity of cell membranes decreases, and this 
results in lowering of active transport and protein secretion 
[1]. Further, all the molecular mechanisms gets impaired due to 
stabilization of secondary structures of DNA, RNA, and proteins 
[2]. RNA binding proteins (RNA chaperones) are ubiquitous and 
found in all living organisms and help to resolve the misfolded 
RNA structures under abiotic stress conditions. During rapid 
drop in temperatures, cold-induced proteins (Cips) are produced 
to protect the cells. With an increase in the cold conditions, 
the production of Cips also increases [3]. Different types of 
Cips like cold shock protein (Csp) family, RNA helicase csdA, 
exoribonucleases, PNPase and RNaseR, initiation factors 2a and 
2b, NusA, and RecA [4-7] have been identified in Escherichia coli 
(E. coli). The Csps are one of the major Cips produced under cold 
conditions mainly in bacteria [4,8]. 

The Csps are the small, acidic, nucleic acid-binding proteins 
ranging from 65 to 75 amino acids that are highly induced during 
low temperature conditions and serves as RNA chaperons to 
prevent the misfolding of mRNA [9]. Based on sequence similarity 
(46-91%), a total of 9 Csps (CspA, B, C, D, E, F, G, H, and I) have  

 
been identified in E. coli and 3Csps (CspB, CspC, CspD) in Bacillus, 
5 Csps (cspA to cspE) in Lactococcus lactis and 3 Csps (CspL, P, 
and C) in Lactococcus plantarum respectively [4,8,10,11]. Later, 
Csps and its homologs were identified in several bacteria, animals 
and plants [12]. Of the 9 E. coli Csps, 4 are induced by cold (CspA, 
CspB, CspG and CspI), 1 by starvation (CspD), 2 (CspC and CspE) 
show constitutive expression at 37 oC, and 2 are uncharacterized 
proteins (CspF and CspH) [13-19]. Acinetobacter oleivorans 
CspE is also induced by cold shock [20]. Earlier, Horn et al. [19] 
reviewed the structure and functions of Csps and Keto-Timonen 
[21] reviewed the role of Csp family with a focus on Yersinia. The 
present mini-review describes the activity of Csps with emphasis 
on Csp homologs which has not been covered earlier. Also, a 
note is added on how these Csps protected the bacterial systems 
against the cold temperatures.

Structure and characterization of Csps
High structural conservation was noticed among Csps, but 

with variable thermostability. The melting temperature of Csps 
of Thermus aquaticus was as high as 76 oC with more rigid 
structure which infers higher structural flexibility is needed to 
accommodate nucleic acids upon cold shock [22]. The half-life of 
Csps also increases upon cold shock from 12 seconds to 20 minutes 
[23]. It has also been pointed out that the CspA mRNA adopts 
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to different stable secondary functional structures by thermo-
sensing the environmental temperature [24,25]. Csps show highly 
conserved CSD domain proteins, with approximate molecular 
weights7.4 KD, which specifically bind to single stranded nucleic 
acids (ssDNA and ssRNA), but unlikely to bind to double stranded 
DNA [26]. Csps also known as RNA binding proteins, interact with 
nucleic acids through moderately conserved conical forms of RNA 
binding motifs RNP-1 (K/R-G-F/Y-G/A-F-V/I-X-F/Y) and RNP-
2 (L/I-F/Y-V/I-G/K-N/G-L) [19]. Nuclear Magnetic Resonance 
(NMR) studies revealed five β strands that are arranged into 
an antiparallel β-pleated sheet forms. One is a closed β barrel, 
two are β sheet surfaces, and the barrel is stabilized by the 
hydrophobic interactions between two β-pleated sheets β1 and 
β2. Similarly, β2 and β3 are interconnected by very short loops L1 
and L2 respectively as well as L3 and L4 are connected by β3 and 
β4, β4 and β5 respectively, and L3 loop contains small α helicals in 
TmCsp (Thermotoga maritime) [27]. 

It has been shown that CspA co-operatively binds to RNA 
and ssDNA and upon CspA binding, the RNA substrate becomes 
more sensitive to nuclease digestion. This suggests that CspA 
functions as an RNA chaperone to prevent secondary structure 
formation in mRNAs at low temperatures, thus enhancing the 
translation efficiency [28]. CspC and CspE are originally identified 
as the multicopy suppressors of the chromosomal partition 
defect of an E. coli muk B mutant [29]. Csp E has been shown to 
interact with nascent RNA in a complex with RNA polymerase 
[30]. Nakaminami et al. [31] determined the importance of 
C-terminal region of a plant Cold Shock Domain Protein (CSDP). 
They showed that deletion of all C-terminal zinc fingers in wheat 
WCSP1 abolished the growth stimulatory activity in E. coli during 
cold stress indicating that the CCHC-type zinc fingers in CSDPs are 
highly vital for growth.

Cold shock proteins and abiotic stress tolerance 
CspA regulates its own synthesis by binding to RNA hair 

pin (cold box) and suppresses gene expression [32]. CspA is 
significantly induced in harsh condition of cold, acidic, oxidative 
stresses in Brucella melitensis, the most dangerous pathogen 
[33]. This suggests that CspA protects bacteria from multiple 
abiotic stresses. CspA isolated from Caulobacter crescentus is 
the most prominent for cold adaption in comparison with CspB, 
and CspA deletion mutant showed major effect on growth at a 
lower temperature [34]. Bacillus CspB protein is a 67 amino acid, 
small, acidic protein, highly homologous with CspA, mostly binds 
to polypyrimidines in single stranded DNA strand, exponentially 
expressed during log phase and prevents cell damage during 
ice crystal formation [35]. CSPs are well conserved in bacteria, 
animals as well as in plants. In bacteria, Csps have one CSD, but 
in eukaryotes, Csps are flanked by N- and C-terminal domains. 
CSD homologs were also reported in eukaryotes, for example CSD 
shows high homology with human Y-box protein YB-1 and others 
[36,37].

 E. coli display cold sensitivity during quadruple-deletion (CspA, 
CspB, CspE, and CspG), suggesting that CspA and its homologs 

protect the E. coli against cold stress conditions. Overexpression 
of all Csps except CspD (associated with starvation) resulted in 
the suppression of cold sensitivity in bacteria. Bacterial systems 
overexpressed with Csps have not been tried for tolerance 
to drought and multiple stresses given simultaneously. Also, 
overexpression of CspD resulted in lethality. The S1 domain of 
polynucleotide phosphorylase (PNPase) is a structural homolog 
of CspA and also suppresses the cold sensitivity of the mutant 
[38]. Thus, except CspD, other Csps appear to be vital for cold 
stress tolerance in bacteria. Plants also have Csp homologs, and 
play a pivotal role in growth, development and stress adaptations 
too [12]. However, studies dealing with overexpression of plant 
Csps are meager.

Pleiotropic effects of Csps and its homologs
CSPs help in bacterial growth under low temperature 

conditions [39]. Bacterial Csps act as chaperones to destabilise 
mRNA secondary structures and enhance the translation process 
[21,40,41]. Csps allow mRNAs to efficiently translate at low 
temperatures and also regulate transcription and transcription 
antitermination there by maintain mRNA stability [42]. CspA, the 
most induced Csp accounts for 13% of the total cellular protein 
at low temperatures [13]. CspA also regulates its own synthesis 
at 37 ºC and cold by premature termination of unusual long 5′-
UTR, a binding site of regulatory proteins [43]. CspA (cold-shock 
DEAD-box protein A) RNA helicase destabilize the secondary RNA 
structures during cold temperature involve in the biogenesis of 
the 50Sribosomal subunits [44]. Wang et al. [17] found that CspA 
and CspB genes are vital for microbial growth under cold stress. 
Jiang et al. [28], Graumann and Marahiel [37] pointed out both 
CspA and CspB increase the protein translation in cold conditions 
through the elimination of stabilized RNA secondary structures. 
Castiglioni et al. [45] expressed CspA and CspB genes in maize 
which conferred abiotic stress tolerance with improved grain 
yield. Likewise, improved drought stress tolerance in wheat 
was noticed with the overexpression of synthetic bacterial cold 
shock protein gene Se CspA [46]. It is observed that E. coli CspE 
functions as anti-terminator in transcription and efficiently 
increases expression of the gene [47]. But, CspD suppress 
growth at stationary phase, inhibits the oriC replication, through 
prepriming complex formation [48].

Hunger et al. [49] found out that CSPs work in concert with 
a DEAD box helicase to rescue misfolded mRNA and help in 
transcription [50]. Bae et al. [51] showed that CspA, CspC, and 
CspE genes act as antiterminators and regulate the expression of 
cold-inducible genes. Plants have CSD proteins which differ from 
that of CSPs that are known to occur in prokaryotes [52]. Several 
of the bacterial CSPs and plant CSDs were found induced under 
cold stress conditions [53,54]. Interestingly, though E. coli CSPs 
are responsive to cold stress and function as RNA chaperones 
[37], they share a domain with AtCSP3, which plays a pivotal 
role in low temperature tolerance as noticed by Kim et al. [55]. 
Park et al. [56] showed that CSDPs affect seed germination and 
growth of Arabidopsis plants under abiotic stress. It has been 
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suggested by Sasaki & Imai [52] that CSDPs regulate embryo 
development, flowering time and fruit development indicating 
their diverse roles in plants unlike that of bacteria. Melencion et 
al. [57] demonstrated an RNA chaperone function of a universal 
stress protein in Arabidopsis which displayed enhanced cold 
stress tolerance in plants. E. coli CspA and CspB genes increased 
cold tolerance when overexpressed in Arabidopsis thaliana [46]. 

This suggests that the synthetic genes had identical functions 
to Arabidopsis AtCSP3 in imparting cold stress tolerance [46]. 
Conversely, SeCspA and SeCspB did not improve cold stress in 
transgenic wheat but showed that synthetic CspA gene improves 
drought stress under the field conditions [46]. Sasaki et al. [58] 
showed that Arabidopsis AtCSDP2 negatively regulates freezing 
tolerance. Further, they demonstrated that overexpression of 
AtCSP2 resulted in reduced salt stress tolerance in Arabidopsis, 
indicating that it is a negative regulator of salt stress. It may be 
noted here that E. coli CSPs share a domain with Arabidopsis 
AtCSP3. Overexpression of AtCSP3, which shares a E. coli CSP 
domain resulted in improved salt and drought stress tolerance by 
upregulating the expression of stress related proteins [59]. Yu et al. 
[46] showed that overexpression of CspA and CspB genes caused 
the upregulation of TaCDPK3 transcription factor in wheat. It is 
known that CDPKs play vital roles in stress signal transduction 
and regulate the downstream genes that can be activated in turn 
by ABA [60].

Conclusions
Food production needs to be addressed with an ever increase 

in population and decrease in natural resources. Development of 
plants which can withstand adverse conditions is certainly the 
need of the hour. Csps act as molecular chaperones and protect 
bacteria from cold shock conditions. Csps are the promising 
genes which involve a cross talk between cold, salt, and drought 
stresses and are efficient in developing plant resilience. Csps are 
abundantly found in bacteria and are constitutively expressed 
during stress conditions. Transgenic plants overexpressing 
bacterial Csps have been found to be tolerant to cold, salt, and 
drought stresses. Thus, Csps are efficient chaperons, but need 
to be exploited further for developing transgenic plants that are 
resilient to the changing environment. 
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