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Introduction
Arsenic (As), the 20th most abundant element in earth’s crust 

is a deadly, major environmental pollutant. It is categorized 
as group 1 carcinogen by International Agency of Research on 
Cancer (IARC). It is released into the environment on a global 
scale as a result of geogenic, anthropogenic and biogenic 
activities and on local scale as a result of industrialization. 
Arsenic toxicity has become a global concern and high 
concentrations of it in groundwater have been reported from 
several countries including India. Arsenic toxicity, bioavailability 
and mobility vary depending on its state of oxidation. To combat 
the toxic consequences of arsenic mobilization, it is crucial to 
remove arsenic from soils and aquatic systems. In the present 
scenario, in situ bioremediation appears to be the most efficient, 
cost effective, environmentally friendly and a safe mechanism 
to detoxify arsenic. This involves the successful exploitation of 
native arsenic resistant bacteria and their genes associated with 
arsenic detoxification. This review focuses on the knowledge of 
currently available bacterial genes involved in arsenic resistant 
mechanisms and their use in developing efficient bioremediation 
strategies.

Advances in ars genes of arsenic resistant bacteria
In arsenic resistant bacteria, ars operon comprising two 

regulatory genes, ars R and ars D and three structural genes, ars  

 
A, ars B and ars C are the most well characterized genetic systems 
[1]. The operons are found either on chromosomes or on the 
plasmids in bacteria. The presence of arsenic resistance genes 
on plasmids offers an opportunity for microbes to disseminate 
these adaptive genetic traits by horizontal gene transfer to 
maintain the fitness among bacteria inhabiting polluted habitats 
[2]. Research reports on complex ars gene clusters with a wide 
variety of gene configurations were also reported [3]. Many 
bacteria with multiple, redundant ars genes appear to be 
frequent in arsenic contaminated environments [4]. However, 
the resistance levels to arsenic may not directly correlate with 
the number of ars operons. Genes like ars O and ars T were 
reported to be a part of ars operon, but their exact functions 
have not been deciphered yet [5]. Inorganic arsenic efflux pumps 
including Acr3, AqpS and Major Facilitator Superfamily (MFS) 
transporters, commonly linked to ars gene clusters are also 
reported to confer arsenical resistance. Over and above, arsenic 
resistance is also conferred by the paired gapdh and ars J genes 
[6], ars N gene [7]. Recently, a genetic mechanism for bacterial 
arsenic resistance was characterized which includes genes 
encoding Ars P permease, Ars H, Ars M and Ars I enzymes [8]. 
Figure 1 illustrates the arsenic transformation and resistance 
mechanisms in bacteria.
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Figure 1: Arsenic transformation and resistance mechanisms in bacteria.

While As(V) enters the cells through Pit and Pst transporters, and As(III) 
enters through GlpF and AqpS. As(V) is reduced to As(III) by arsC. As(III) 
extrusion is carried out by arsB/Acr3 or arsA/arsB mediated by arsD. 
As(III) methylation occurs by arsM. MAs(III) extrusion takes place by 
arsP permease or oxidation by arsH to MAs(V). MAs(V) extrusion is 
carried out by arsJ. Demethylation of MAs(III) to As(III) is modulated 
by arsI.

Potential use of arsenic resistant bacteria in 
remediation 

Many reports indicate the possible role of native microbial 
communities in in situ bioremediation of the arsenic contaminated 
sites [9, 10, 11]. The estuarine waters of Goa situated on the west 
coast of India, are known to be highly contaminated with arsenic 
besides other states like West Bengal and Bihar [12]. Earlier 
studies reported the arsenite tolerance and its biotransformation 
potential in estuarine bacteria isolated from waters of Goa, 
India [13]. The identification and characterization of ars genes 
may serve as potential molecular biomarkers to monitor the 
level of arsenic pollution in that environment [14]. However, 
studies related to the identification of ars genotype in arsenic-
resistant bacteria inhabiting these estuarine waters were not 
available. This prompted us to isolate diverse arsenic-resistant 
bacteria from the Mandovi and Zuari estuarine systems and 
characterize the ars genotype among the isolates. In our earlier 
study, 44 arsenic-resistant bacteria were isolated and identified. 
They belonged to the genera Brevibacterium, Acinetobacter, 
Providencia, Pseudomonas, Halomonas, Vibrio, Exiguobacterium 
and Staphylococcus. 

The ars genotype characterization revealed the arsA, B and 
C genes were individually detected using PCR in 16, 9 and 13 

bacterial isolates respectively. Besides, ars B and ars C genes 
were isolated from the genera Halomonas and Acinetobacter. The 
arsC gene isolated from Acinetobacter species complemented 
arsenate resistance in E. coli WC3110 and JM109 validating 
its function [15]. Hence, these bacteria with ars genes may 
play significant role in controlling the mobility of arsenic in 
environment and its subsequent detoxification by complexation.

Recent studies reported the use of genetically modified 
bacteria as biosensors to detect the inorganic arsenic pollution 
levels in the contaminated sites [16]. These biosensors are based 
on the gene constructs in which an ars R operator and promoter 
sequence is joined with the sequence of the reporter gene 
such as luciferase, β-galactosidase, an autofluorescent protein 
or cytochrome c peroxidase. Bioaccumulation of arsenic by 
indigenous bacteria and genetically engineered bacteria provide 
great opportunities for their use in bioremediation. Recently, 
Lysinibacillus strain B1-CDA and Corynebacterium glutamicum 
mutants [developed by removal of ars C and Acr3 efflux systems 
and also by over-expression of aquaglyceroporin genes (Glp 
F)] were reported to accumulate arsenic within the cell. Such a 
system contributes to clean up of waters polluted with arsenic 
metalloid [17,18]. 

Several microbial-assisted arsenic removal technologies 
incorporating biological transformation of arsenic and its 
subsequent adsorption by different compounds have also been 
developed [19]. Recently identified genes such as ars P, ars H, ars 
M and arsI can also be engineered to develop genetic models that 
could play crucial role in combating the toxic effects of organic 
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arsenic species in the environment. Another promising way 
of improving bioremediation processes is to deploy biofilters 
by expressing novel genes like phytochelatin synthase and 
metallothioneins in soil bacteria, which may scavenge inorganic 
arsenic species from polluted sites.
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