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Introduction
The ER is an intracellular organelle present adjacent to the 

nucleus found in the eukaryotic cells. ER is a tube-like structure 
that forms a series of flattened sacs inside the cytoplasm of 
the cells. ER plays a crucial role in normal cellular functioning, 
by processing of posttranslational modification and folding 
of secretory and membrane proteins. The ability of ER to 
properly fold nascent proteins depends on chaperone proteins 
[1]. Chaperones play an important role in the proper folding 
of proteins, and any dysfunction in these chaperones may lead 
to protein folding disorders in the human body. Maintaining 
protein homeostasis within the cell is vital for the cells to 
function and survive. However, under conditions of cellular 
stress, proteostatic mechanisms must be activated to recycle, 
refold, or initiate degradation of misfolded or unfolded proteins 
[2]. Thus, in this mini-review, we will discuss the importance  

 
of chaperones, specifically the 78 kD glucose-regulated protein 
GRP78 (also known as BiP and HSP5a), and its possible relation 
with mTOR. mTOR has a significant role in the maintenance of 
protein homeostasis. 

Protein homeostasis can be called as a fragile balance 
between protein synthesis, correcting misfolded proteins and 
degradation of damaged proteins [3]. Molecular chaperones 
are responsible for overseeing the process of protein folding, 
refolding of misfolded proteins and degradation of damaged 
proteins. Any change in the function of these chaperones can 
lead to disturbance in protein homeostasis which may further 
cause several diseases including neurological disorders and 
cancer [4]. mTOR kinase and ER stress pathway also trigger 
UPR which controls many cellular processes like translation, 
apoptosis, autophagy, metabolism, and inflammation [5].
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Discussion
GRP78 is a major ER chaperone of HSP-70 family that 

plays a pivotal role in normal ER functioning and its increased 
expression also works as an indicator of ER stress. GRP78 is 
commonly localized inside the ER lumen however it has been 
reported that GRP78 can be detected in the mitochondria, 
cytosol, nucleus, or even the cell surface, depending on specific 
cell type and conditions [6,7]. Therefore, different locations 
prime GRP78 to activate different molecular signaling events [7]. 
GRP78 also helps in many cellular processes, like translocation 
of the newly synthesized polypeptides across the ER membrane, 
help in protein folding and assembly of proteins, regulating 
calcium homeostasis, targeting misfolded/unfolded proteins 
for ER-Associated Degradation (ERAD) pathway as well as 
serving as an ER stress sensor [8, 9]. Moreover, GRP78 is known 
as a master regulator of ER stress because of its antiapoptotic 
properties and its ability to control the UPR signaling [9]. UPR is 
usually activated after ER stress in the cells and regulates many 
cellular processes [10].

The UPR is a well-conserved pathway from yeast to mammalian 
cells. Misfolded proteins and their accumulation generate 
protein aggregates and depletion in ATP levels which in turn 
leads to ER stress and UPR activation [11]. To manage ER stress, 
UPR increases the ER folding capacity through transcriptional 
upregulation of ER folding, lipid biosynthesis, and ERAD 
(Endoplasmic-reticulum-associated protein degradation) along 
with a decrease in folding load through selective degradation of 
mRNA and translational repression. GRP78 manages the UPR 
by regulating three ER transmembrane proteins: transcription 
factor 6 (ATF-6), inositol-requiring enzyme 1 (IRE1), and protein 
kinase R-like endoplasmic reticulum kinase (PERK) [12]. GRP78 
also has a role in autophagic protein quality control wherein 
it participates in the destruction of misfolded proteins in the 
cytosol [11]. 

Apart from the regulation of autophagy, GRP78 may also 
control activated phosphatidylinositol 3-kinase (PI3K)/AKT 
pro-survival pathways [13]. Activation of the PI3K/AKT pathway 
eventually leads to the upregulation of mTOR (Figure 1). 

Figure 1: Schematic representation of possible crosstalk between ER stress and mTOR.

Although both of these signaling pathways, i.e., UPR (via 
GRP78) and mTOR have attracted extensive attention, the 
crosstalk between the two pathways has emerged recently. 
mTOR complex 1 (mTORC1) functions both upstream and 
downstream of ER stress signals, which can either upregulate or 
downregulate the anabolic output of mTORC1. Upon prolonged 
ER stress, mTORC1 aids in apoptosis by suppressing the Akt 
through feedback inhibition. Similarly, constant ER stress 
inhibits activation of Akt by mTOR complex 2 (mTORC2) [5]. 
Functioning of ER stress upstream of mTORC1 can add different 

molecular players in controlling this crosstalk. Inhibiting UPR 
leads to the activation of PI3k-Akt-mTORC1 [14, 15] signaling 
pathway via ATF6α through a still unknown mechanism [16]. As 
mTORC1 and UPR are interdependent, there are several common 
targets for these two. UPR and mTORC1 work synergistically and 
regulates angiogenesis [17], insulin resistance [18], hepatic lipid 
synthesis [19], and NF-κB signaling [20,21]. Alternatively, the 
antagonistic effect of these two signals when they work together 
is observed in apoptosis, autophagy, translation and ribosome 
biogenesis [22-25].
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Although not much is known about the relation between ER 
stress and mTORC2, it was observed that ER stress when induced 
pharmacologically for long hours, led to GSK3β catalyzed 
phosphorylation of rictor, a major component of mTORC2, 
which also suppresses activation of Akt [26]. Till now there is 
no substantial evidence which suggests whether mTORC2 plays 
any role either in activation or downregulation of Akt. Although 
one study demonstrates that a portion of mTORC2 is present 
on the ER membrane, thus making it a possibility that mTORC2 
may phosphorylate Akt on ER membrane [27]. Thus, we would 
like to hypothesize mTOR’s association with specific membranes 
may control the mTOR complexes, as demonstrated by mTORC1, 
which couples the sensing of amino acids in the lysosomal lumen 
with its activation on the surface of lysosomes [28].

Interdependence of UPR and mTORC1 have been observed 
in some pathologies, one such example being Tuberous sclerosis 
(TSC) [29]. TSC, a multisystem disorder is caused by activation 
of ER stress pathways and mTORC1 [30,15]. An epileptic seizure 
is the most common symptom of TSC which is usually caused by 
cerebral cortical tubers but now is also thought to be associated 
with mTORC1-dependent ER and oxidative stress through 
the ATF4-CHOP pathway [15]. Another disease characterized 
by an interaction between mTORC1 and ER stress is diabetic 
nephropathy [31]. As mTOR is important in maintaining the 
overall cell viability, it is suggested that low doses of rapamycin 
along with phenylbutyric acid (PBA), an ER-stress-alleviating 
‘chemical chaperone’, for inhibition of ER stress, can be used to 
treat nephropathies [31]. However, the combination of mTOR 
inhibitors and PBA requires preclinical studies for the treatment 
of TSC or diabetic nephropathy. TSC cells are usually sensitive to 
ER-stress-induced cell death. Thus, activation of ER stress along 
with the activation of PI3K-Akt–mTORC1 pathway could kill 
tumors selectively. For this, Mcl-1, a member of the Bcl-2 family, 
may provide a link between ER stress- mTORC1 based therapy. 
Further the inhibition of 4E-BP, downstream effectors of mTOR, 
controlled translation of Mcl-1 plays a key role in the treatment 
of mTORC1-hyperactive cancers [22]. Therefore, understanding 
of the mTOR and GRP78 axis may help in opening of new avenues 
in the treatment of different diseases.

Conclusion
Even though some of the interplays between ER stress and 

mTOR has been uncovered, several recent studies have reported 
new links between the two. Thus, this field of combined effect of 
mTOR and ER stress is significantly intriguing and needs lot of 
scientific progress for its understanding. 
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