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Introduction
An alarming and persistent rise in antibiotic resistance 

among many important pathogenic bacterial species poses one 
of the greatest contemporary challenges to the public health. 
The treatment of bacterial infections is becoming increasingly 
ineffective due to rapid mutation which leads to antibiotic 
resistant and resistant bacteria become more prevalent. As result 
the existing antibiotics are gradually obsolete and again new drugs 
are needed to be designed for the same threat. Recently, antibiotic 
resistance is a global health crisis linked to increased, and often 
unrestricted, antibiotic use in humans and animals [1]. The rise of 
multiclass-antibiotics resistant pathogens and the dearth of new 
antibiotic development place an existential strain on successful 
infectious disease therapy. Breakthrough strategies that go 
beyond classical antibiotic mechanisms are needed to combat this 
looming public health catastrophe. Reconceptualizing antibiotic 
therapy in the richer context of the host-pathogen interaction 
is required for innovative solutions. Here we review these  

 
relationships and their relevance to Antimicrobial Resistance 
(AMR) trends witnessed in the clinical setting. 

This review highlights the issues of enrichment and dissemi-
nation of Antibiotics Resistance Genes (ARGs) [2,3] in the environ-
ment, and also future needs in mitigating the spread of antibiotic 
resistance in the environment, particularly under the planetary 
health perspective, i.e., the systems that sustain or threaten hu-
man health. By defining specific virulence factors, the essence of a 
pathogen, and pharmacologically neutralizing their activities, one 
can block disease progression and sensitize microbes to immune 
clearance. Likewise, host-directed strategies to boost phagocyte 
bactericidal activity, enhance leukocyte recruitment, or reverse 
pathogen-induced immunosuppression seek to replicate the suc-
cess of cancer immunotherapy in the field of infectious diseases. 
The answer to the threat of multidrug-resistant pathogens lies in 
current antibiotic paradigms. Furthermore, the rise of bacterial 
strains resistant to multiple antibiotics is expected to dramatically 
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limit treatment effectiveness, leading to potentially incurable out-
breaks [4]. 

In addition to new drug development efforts, there is an urgent 
need for preclinical tools that are capable of effective and rapid 
detection of resistance, as culture-based laboratory diagnostics 
test are usually time consuming and costly. One of the major health 
threats of 21st century is emergence of antibiotic resistance. To 
manage its human health and economic impact, efforts are made 
to develop novel diagnostic tools that rapidly detect resistant 
strains in clinical settings [5,6]. In our study, we employed a range 
of powerful machine learning tools to predict antibiotic resistance 
from whole genome sequencing data for model bacteria. We 
used the designed machine learning algorithms as predictors, 
and could train average precision of the aimed value and recall 

of the closest number to mean without prior knowledge about 
the causal mechanisms considering environmental factors [7-9] 
related to key parameters such as antibiotic resistomes [10-14] 
and their mechanisms [15,16]. These results demonstrate the 
potential application of machine learning methods as a diagnostic 
tool in healthcare settings. Therefore, systemically designed 
algorithms-based strategies to mitigate the spread of antibiotic 
resistance are suggested [17,18]. Overall, this article provides 
a conceptual framework for understanding the complexity of 
the problem of emergence of antibiotic resistance in the clinic. 
Availability of such knowledge will allow researchers to build 
models for dissemination of resistance genes and for developing 
interventions to prevent recruitment of additional or novel genes 
into pathogens. 

Figure 1: Schematic illustration of antibiotics resistance investigation.

Investigational Background
The successful treatment of infectious diseases heavily relies 

on the therapeutic usage of antibiotics. However, the high use of 
antibiotics in humans and animals leads to increasing pressure 
on bacterial populations in favorite of resistant phenotypes. 
Antibiotics reach the environment from a variety of emission 
sources and are being detected at relatively low concentrations. 
Given the possibility of selective pressure to occur at sub-inhibitory 
concentrations, the ecological impact of environmental antibiotic 
levels on microbial communities and resistance levels is vastly 
unknown. Quantification of Antibiotics Resistance Genes (ARGs) 
and of antibiotic concentrations is becoming commonplace. Yet, 
these two parameters are often assessed separately and in a 
specific spatiotemporal context, thus missing the opportunity 
to investigate how antibiotics and ARGs relate. Furthermore, 
antibiotics (multi)resistance has been receiving ever growing 
attention from researchers, policymakers, businesses and civil 
society. Our aim was to collect the limited data on antibiotic 
concentrations and ARGs abundance currently available to 
explore if a relationship could be defined. A metric of antibiotic 
selective pressure, i.e. the sum of concentrations corrected for 

microbial inhibition potency, was used to correlate the presence 
of antibiotics in the environment to total relative abundance 
of ARGs while controlling for basic sources of non-independent 
variability, such as strain and antibiotic class. The results of this 
meta-analysis show a significant statistical effect of antibiotic 
pressure and type of environmental compartment on the increase 
of ARGs abundance even at very low levels. Moreover, our analysis 
emphasizes the importance of integrating existing information 
particularly when attempting to describe complex relationships 
with limited mechanistic understanding in our previous pape 
(Figure 1). 

Hence, the application of metagenomic functional selections 
to study antibiotics resistance genes is revealing a highly diverse 
and complex network of genetic exchange between bacterial 
pathogens and environmental reservoirs, which likely contributes 
significantly to increasing resistance levels in pathogens. In some 
cases, clinically relevant resistance genes have been acquired 
from organisms where their native function is not antibiotics 
resistance, and which may not even confer a resistance phenotype 
in their native context. In this review, we attempt to distinguish 
the resistance phenotype from the resistomes genotype, and we 
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highlight examples of genes and their hosts where this distinction 
becomes important in order to understand the relevance of 
environmental niches that contribute most to clinical problems 
associated with antibiotic resistance.

Methods
 We conduct a systematic review, selecting studies if they are 

published Randomized Controlled Trials (RCTs) which report the 
relationship between taking any antibiotics for any indication and 
incidence of resistant Strains in patients of any age group. We use 
a predefined search strategy to identify studies meeting these 
eligibility criteria in MEDLINE, Embase, Global Health and the 
Cochrane Central Register of RCTs. Two authors independently 
screen titles and abstracts, review the full texts and undertake 

data extraction. If feasible, we will perform pair-wise meta-
analysis modelling to determine the relationship between the 
duration of antibiotics treatment and development of resistant 
Strain. If the identified studies meet the assumptions for a 
network meta-analysis, we additionally model this relationship 
using indirect comparisons. This hypothesis illustrated in 
Figure 2 as an example for macrolide class and its hypothetical 
network of anticipated randomized controlled trial data for the 
effect of macrolide treatment duration on the development of 
antimicrobial resistance is presented. As shown in Figure 2, each 
treatment group is a node. The lines joining nodes, termed edges, 
will be drawn to thickness that graphically represents the amount 
of direct evidence: the number of comparisons that we expect to 
find between a particular pair of nodes.

Figure 2: Hypothetical network of anticipated randomised controlled trial data for the effect of chosen antibiotics treatment duration on the 
development of antimicrobial resistance.

Mechanisms of antibiotic resistance: genetic basis
 Emergence of resistance among the most important bacterial 

pathogens is recognized as a major public health threat affecting 
humans worldwide [19-22]. Multidrug-resistant organisms have 
not only emerged in the hospital environment but are now often 
identified in community settings, suggesting that reservoirs of 
antibiotics resistant bacteria are present outside the hospital [23-
25]. The bacterial response to the antibiotic attack is the prime 
example of bacterial adaptation and the pinnacle of evolution. 
Survival of the fittest is a consequence of an immense genetic 
plasticity of bacterial pathogens that trigger specific responses 
that result in mutational adaptations, acquisition of genetic 
material, or alteration of gene expression producing resistance to 
virtually all antibiotics currently available in clinical practice [26-
28]. Therefore, understanding the biochemical and genetic basis 
of resistance is of paramount importance to design strategies 
to curtail the emergence and spread of resistance and to devise 

innovative therapeutic approaches against multi-antibiotics 
resistant organisms. 

Overview on evolutionary processes of the antibiotic 
resistance 

 During millions of years antibiotics and antibiotic resistance 
genes have co-evolved slowly. In this long period the first transition 
was the acquisition of pre-resistance genes by different bacteria. 
This genetic transference allowed the evolution toward true and 
more efficient antibiotic resistance genes. However, the great 
evolutionary transition was the discovery, mass production and 
consumption of antibiotics. Antibiotics accelerated dramatically 
the diversification of resistance genes and selection for reaching 
extraordinary efficient variants (Figure 3). In this study, we will 
describe in detail the major mechanisms of antibiotic resistance 
encountered in clinical practice, providing specific examples in 
relevant bacterial pathogens (Table 1). 
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Figure 3: Overview evolutionary processes of the antibiotic resistance.

Table 1: Different examples of resistance mechanisms with clinical relevance from natural functions in environmental bacteria.

Antimicrobial classified group Resistance Mechanisms Related natural protein Natural reservoirs  Antibiotics 
affected

Aminoglycosides Acetylation Phosphorylation Histone-acetylases Protein kinases Streptomyces

Tetracyclines Efflux (mar) Major facilitator superfamily EF-
Tu, EF-G Streptomyces

Chloramphenicol Acetylation Efflux (mar) Acetylases Major facilitator 
superfamily EF-Tu, EF-G Streptomyces

Macrolides Target mutation 50S ribosomal subunit Streptomyces

β-lactams (methicillin) PBP2a Homologous PBP2a Staphylococcus sciuri

β-lactams (carbapenems)

OXA-48 inactivating enzyme Proteins participating in 
peptidoglycan synthesis Shewanella xiamenensis

OXA-23 inactivating enzyme Proteins participating in 
peptidoglycan synthesis Acinetobacter radioresistens

Inactivating process L1 beta-lactamase Stenotrophomonas maltophilia

Cephalosporins Inadequate target PBP5 mutations Enterococcus faecium

Fluoroquinolones Topoisomerase protection Qnr-like protein Shewanella algae

Nowadays, the high-throughput sequencing tools and 
bioinformatics software, knowledge on high bacterial diversity 
in bacterial communities (metagenome) is increasing. A huge 
diversity of resistance mechanisms to practically all antibiotic 
families has been found in both antibiotic- and non-antibiotic-
producing bacteria. Three types of resistomes can be defined: 
intrinsic, environmental, and unknown [29-33]. In the intrinsic 
resistome or pre-resistome, the antibiotic resistant elements 
belong to bacterial metabolic networks, reflecting their role 
in microbial physiology. They might be coupled to signaling 
molecules (antibiotics) facilitating the co-selection of antibiotics 
and antibiotic resistance genes in a constant arms-race over a 
long time. The intrinsic resistome is a wider concept and probably 
universal to the bacterial world. The description of the intrinsic 
resistome has expanded our knowledge about potential new 

resistance mechanisms [34-36]. They could become true antibiotic 
resistance genes if appropriate driving forces were exerted. 
Moreover, the potential adaptiveness of these pre-resistome 
genes can be accelerated if, by chance, they are transferred to new 
genetic contexts (Figure 3), where these genes may evolve toward 
more efficient enzymes without having a physiological role. As a 
consequence, this silent and non-predictive resistome (unknown 
resistome) is ready to be selected [37-39].

Mutational resistance gene transfer
Bacteria have a remarkable genetic plasticity that allows them 

to respond to a wide array of environmental threats, including 
the presence of antibiotic molecules that may jeopardize their 
existence [40,41]. As mentioned, bacteria sharing the same 
ecological niche with antimicrobial-producing organisms have 
evolved ancient mechanisms to withstand the effect of the 
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harmful antibiotic molecule and, consequently, their intrinsic 
resistance permits them to thrive in its presence [42,43]. From 
an evolutionary perspective, bacteria use two major genetic 
strategies to adapt to the antibiotic attack, mutations in gene(s) 
often associated with the mechanism of action of the compound, 
and acquisition of foreign DNA coding for resistance determinants 
through horizontal gene transfer [44,45].

In this scenario, a subset of bacterial cells derived from a 
susceptible population develop mutations in genes that affect 

the activity of the drug, resulting in preserved cell survival in the 
presence of the antimicrobial molecule. Once a resistant mutant 
emerges, the antibiotic eliminates the susceptible population and 
the resistant bacteria predominate. In many instances, mutational 
changes leading to resistance are costly to cell homeostasis and 
are only maintained if needed in the presence of the antibiotic. In 
general, mutations resulting in antimicrobial resistance alter the 
antibiotic action via one of the following mechanisms (see Figure 
4 as an example as described below). 

Figure 4: Schematic representation of the mechanism of action and resistance to linezolid. 
Panel A. Linezolid interferes with the positioning of aminoacyl-tRNA; Panel B. Representation of domain V of 23S rRNA.

Mutation of target sites
One of the most efficient mechanisms for accumulating 

antimicrobial resistance genes is represented by integrons, which 
are site-specific recombination systems capable of recruiting open 
reading frames in the form of mobile gene cassettes. Integrons 
provide an efficient and rather simple mechanism for the 
addition of new genes into bacterial chromosomes, along with the 
necessary machinery to ensure their expression; a robust strategy 
of genetic interchange and one of the main drivers of bacterial 
evolution. Thus, resistance arising due to acquired mutational 
changes is diverse and varies in complexity [46-50]. Classically, 
bacteria acquire external genetic material through three main 
strategies, transformation (incorporation of naked DNA), 
transduction (phage mediated) and, conjugation. Emergence of 
resistance in the hospital environment often involves conjugation, 
a very efficient method of gene transfer that involves cell-to-cell 
contact and is likely to occur at high rates in the gastrointestinal 

tract of humans under antibiotic treatment. As a general rule, 
conjugation uses Mobile Genetic Elements (MGEs) as vehicles to 
share valuable genetic information, although direct transfer from 
chromosome to chromosome has also been well characterized. 
The most important MGEs are plasmids and transposons, both of 
which play a crucial role in the development and dissemination of 
antimicrobial resistance among clinically relevant organisms. In 
other words, antibiotics resistance mechanisms are summarized 
as following; modifications of the antimicrobial target (decreasing 
the affinity for the antibiotics), a decrease in the drug uptake, 
activation of efflux mechanisms to extrude the harmful molecule, 
or global changes in important metabolic pathways via modulation 
of regulatory networks [51]. 

 For an instance, the ErmC leader peptide (Figure 5) is 
produced and the ermC mRNA forms two hairpins, preventing 
the ribosome to recognize the Ribosomal Binding Site (RBS) of 
ermC. As a result, translation is inhibited under non-induction 
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conditions. After exposure to erythromycin, the antibiotic interacts 
with the ribosome and binds tightly to the leader peptide, stalling 

progression of translation. This phenomenon releases the ermC 
RBS and permits translation.

Figure 5: Schematic representation of the post-transcriptional control of the gene.
RBSL, ribosomal(blue) binding site of the leader; RBSC, ribosomal binding site of ermC; AUG, initiation codon.

Therefore, bacteria have evolved a sophisticated mRNA-based 
control mechanism to tightly regulate the expression of these 
methylases, ensuring a high efficiency of action in the presence 
of the antibiotic while minimizing the fitness costs for the 
bacterial population. Similarly, the system is usually not induced 
by lincosamides [46,47] or streptogramins [48]. However, the use 
of these agents against isolates carrying inducible erm genes may 
result in the selection of constitutive mutants in vivo (particularly 
in severe infections), leading to therapeutic failures.

Prediction of antibiotic resistance
The emergence of microbial antibiotic resistance is a global 

health threat. In clinical settings, the key to controlling spread of 
resistant strains is accurate and rapid detection. As traditional 
culture-based methods are time consuming, genetic approaches 
have recently been developed for this task. The detection of 
antibiotics resistance is typically made by measuring a few known 
determinants previously identified from genome sequencing, and 
thus requires the prior knowledge of its biological mechanisms. To 
overcome this limitation, we employed machine learning models 
to predict resistance to chosen compounds across multi-classes 
of antibiotics from existing and novel whole genome sequences 
of model strains [17]. It was considered a range of methods, and 
examined population structure, isolation year, gene content, 
and polymorphism information as predictors. Gradient boosted 
decision trees consistently outperformed alternative models 
with an average accuracy of the aimed value on held-out data. 
While the best models most frequently employed gene content, 
an average accuracy scores could be obtained using population 
structure information alone. Single nucleotide variation data were 
less useful, and significantly improved prediction only for chosen 

antibiotics and its combination through given model algorithms 
through modification specially. These results demonstrate that 
antibiotics resistance can be accurately predicted from whole 
genome sequences without a strain knowledge of mechanisms, and 
that both genomic and epidemiological data can be informative. 
This paves way to integrating machine learning approaches into 
diagnostic tools in the clinic [18]. Still, the understanding of 
mode of evolution of resistance in bacteria is a determining step 
in the preclinical development of new antibiotics, because drug 
developers assess the risk of resistance arising against a drug 
during preclinical development.

Antibiotics resistance measurements index
The aim of the study was to evaluate a cumulative Antibiotics 

Resistance Index (ARI) as a possible key outcome measure of 
antimicrobial stewardship programs and as a tool to predict 
antimicrobial resistance trend. Antibiotic susceptibility for 
model strains pathogens, recovered from blood cultures during 
a fixed time period, was analyzed to obtain a cumulative ARI. 
For each antibiotic tested a score of 0, 0.25, 0.5, 0.75 or 1 was 
assigned for susceptibility, intermediate resistance, or resistance, 
respectively, and the ARI was calculated by dividing the sum of 
these scores by the number of antibiotics tested. Cumulative 
ARI of microorganisms were compared, and a mathematical 
prediction model for antimicrobial resistance trend was obtained. 
ARI could be a useful tool to measure the impact of antibiotics 
surveillance programs on antibiotics resistance. This clinical 
prediction rule performed well with internal validation. It showed 
good calibration and good discrimination. The receiver operating 
curve is shown in Figure 6. 
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Figure 6: Prediction model AUC.

Predicting antibiotic resistance from resistance genes
 It has been developed a high-throughput multiplex PCR 

test for several resistance genes encoding OpGen. OpGen offers 
the high-throughput multiplex PCR test as a commercial testing 
service for analysis of bacterial isolates. The resistance genes were 
chosen based on a review of the scientific literature and surveys 
of resistance gene databases. PCR assays specific for gene variants 
at the amino acid positions indicated or homologous sequence 
regions shared by different gene subtypes within a family of 
closely related resistance genes were designed in Table 2. The 

resistance genes in database effectively covered the resistance 
mechanisms for the isolates in this study and could be used for 
the sensitive prediction of phenotypic resistance with generalized 
linear models, which allowed the inference of phenotypic 
susceptibility in the absence of predicted resistance. The binary 
models effectively predicted phenotypic resistance based on the 
presence of resistance genes but did not have sufficient sensitivity 
to infer phenotypic susceptibility in the absence of resistance 
genes because the binary models lacked full coverage of resistance 
mechanisms. 

Table 2: Percentage of isolates with non-susceptible phenotypes per antibiotic.

Antibiotic
% of isolates

E. coli (n = 2,919) K. pneumoniae (n = 1,974) P. mirabilis (n = 1,150) P.aeruginosa (n = 1,484)

Gentamicin 33 58 40 60

Tobramycin 46 76 38 51

Ciprofloxacin 68 81 58 67

Levofloxacin 67 72 47 69

Trimethoprim-sulfamethoxazole 58 75 63 Intrinsic resistance

Imipenem 7 39 Intrinsic resistance 64

Ertapenem 13 51 1 Intrinsic resistance

Cefazolin 74 90 49 Intrinsic resistance

Cefepime 68 84 29 69

Cefotaxime 71 86 41 Intrinsic resistance

Ceftazidime 55 84 22 62

Ceftriaxone 71 87 41 Intrinsic resistance

Ampicillin 88 Intrinsic resistance 72 Intrinsic resistance

Aztreonam 67 84 13 64

Additionally, genome retrieval and identification analyses 
were performed. The complete genome of Strain sequences 
was downloaded from The National Center for Biotechnology 
Information (NCBI) Genome Database. The fasta file format of 
the genome sequence of 11 strains of bacteria were thoroughly 
analysed for Antibiotics Resistance Genes (ARGs) on the bulk 
analysis Resistance Gene Identifier (RGI) or CARD 2017 Platform. 

Default select criteria, which identified gene base on strict 
or perfect only was used. On the RGI platform each genome 
sequence file was uploaded, and all settings were left at default. 
To have an inter-relation as well as qualitative and quantitative 
pattern of these ARGs in the various strains, a heatmap chart was 
constructed using Microsoft Excel 2016 version for Mac. 
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Mathematical Modeling
All sequencing reads sets were used as inputs to each of 

antibiotics resistance prediction algorithms. In case of no calls or 
if there were discordant results among the reads sets of a sample 
for antibiotics, the prediction for the sample for that particular 
antibiotics was treated as missing. In our sensitivity and 
specificity calculation and parameter estimation for DST [52,53] 
credibility computation, which are subsequently described in 
detail, we omitted those samples clearly indicated to have been 
used to train the tools. The sensitivities and specificities of the 
algorithms for antibiotics were first calculated together with their 
95% confidence interval, with the corresponding phenotypes 
in the data collection as the gold standard. Bioinformatics tools 
have also been developed to predict drug resistance from Whole 
Genome Sequencing (WGS) data. Sufficiently large databases 
possessing both WGS and DST information have allowed the drug 
resistance to several antibiotics to be accurately predicted, to the 
extent that rapid diagnostics that target these mutations have 
been developed [54-57].

The DST credibility score for each sample was calculated as 
the probability specifically, for antibiotics i, let the prevalence 
of antibiotics resistance be Pi, and the true sensitivity, the true 
specificity, the proportion of no-call predictions among truly 
resistant samples and the proportion of no-call predictions 
among truly susceptible samples of the program be Sensij, Specij, 
NoRij, and NoSij, for j in {StrainProfiler, Anibiotics}. We denote the 
predictions of the algorithms as

{ Pr , }predictions yjj Strain ofile Antibiotics= ∈
 where Yj = 1 if the sample is predicted resistant, 0 if 

susceptible, and NA otherwise. The probability of the sample 
being resistant given the predictions of the four tools is as follows:

 𝑃 (𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑠 𝑟𝑒 𝑠𝑖𝑠𝑡𝑎𝑛𝑡 | 𝑝𝑟𝑒 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) = 𝑃 (𝑝𝑟𝑒 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 | 
𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑠 𝑟𝑒 𝑠𝑖𝑠𝑡𝑎𝑛𝑡) / 𝑃 𝑖𝐿𝑖𝑘𝑒 𝑙𝑖ℎ𝑜𝑜𝑑 (𝑝𝑟𝑒 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠),

with Likelihood(predictions) calculated as

                      ( |    resistant)p predicition samp isle

            ( |    )pi p predictions samp is susceptile ble+

                   resistant)( ) ( |p pi jp yj samp isle− =

                  ).(1 )( ) ( | is susceptiblepi jp yj sa l imp e p+ −

where

                 ( )|   resistant {    1,p Yj sample is se ij ifns ==

                                 0,1    sensij No R if Yij j =− −

                                                ,Rij if yj isN NAo
and

             ( ) |   {1  1yj sampleis susceptible Specij NoSij ip f= − − =

                                              0iSpec fi yjj =

                                                .sij if yj isN NAo

The DST credibility score of a sample thus equals P (sample 
is resistant |  predictions) if its reported phenotype is resistant, or 
1 – P (sample is resistant |  predictions) if the reported phenotype 
is susceptible.

Figure 7: The mutant selection window (MSW) for arbitrary mutant strains.
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Prediction on antibiotic resistance at the PK/PD point 
of view

 Antibiotic resistance constitutes one of the most pressing 
public health concerns [58-61]. Antimicrobial peptides (AMPs) 
of multicellular organisms are considered part of a solution to 
this problem, and AMPs produced by bacteria such as colistin 
are last-resort drugs. Importantly, AMPs differ from many 
antibiotics in their pharmacodynamic characteristics. Here we 
implement these differences within a theoretical framework to 
predict the evolution of resistance against AMPs and compare it 
to antibiotic resistance. Our analysis of resistance evolution finds 
that pharmacodynamic differences all combine to produce a much 
lower probability that resistance will evolve against AMPs. The 
finding can be generalized to all drugs with pharmacodynamics 
similar to AMPs [62-65]. Pharmacodynamic concepts are familiar 
to most practitioners of medical microbiology, and data can be 
easily obtained for any antibiotics or antibiotics combination. 
Our theoretical and conceptual framework is, therefore, widely 
applicable and can help avoid resistance evolution if implemented 
in antibiotic stewardship schemes or the rational choice of 
new antibiotics candidates [66]. Mutant selection window 
and pharmacodynamic parameters [67,68] Schematically, the 
revised Mutant Selection Window (MSW) and pharmacodynamic 
parameters are shown in Figure 7. 

 The MSW is defined as the antimicrobial concentration range 
in which resistant mutants are selected [69, 70-71]. Following 
MSW using net growth curves of a susceptible strain S and a 
resistant strain R are also determined. Mathematically, net growth 
is described with the pharmacodynamic function ψ (a). In short, 
the function consists of the four pharamcodynamic parameters 
[67, 68, 72-74] net growth in the absence of antibicrobials ψ max, 
net growth in the presence of a dose of antimicrobials, which 
effects the growth maximal, ψ min, the Minimum Inhibitory 
Concentration (MIC) and the parameter κ, which describes 
the steepness of the pharamcodynamic curve. Here, the two 
pharmacodynamics functions ψ S(a) and ψ R(a) describe the 
net growth of the S and R, respectively, in relation to the drug 
concentration a. Cost of resistance c is included as a reduction of 
the maximum growth rate of the resistant strain   max, R, with 
c = 1 – ψ max, R/ ψ max, S. Note that with this definition, cost 
of resistance is expressed as reduction in net growth rate in the 
absence of antimicrobials (a = 0). The lower bound of the MSW is 
the concentration for which the net growth rate of the resistant 
strain is equal to the net growth rate of the sensitive strain and is 
called the Minimal Selective Concentration (MSC).

The upper bound is given by the MIC of the resistant strain 
MICR. It is calculated the size of the MSW as. Following the 
original approach to define the MSW, the boundaries of the MSW 
can also be applied to the pharmacokinetics of the system. The 
width of the MSW is partly determined by the steepness of the 
pharmacodynamic curve (Figure 7). 

Mathematical modeling focused on Pharmacodynamics
To study resistance evolution, we used a mathematical 

model [75,76] that incorporates pharmacokinetics (PK)/
pharmacodynamics (PD) [77] and captures population dynamics 
of bacterial populations under treatment with antimicrobial 
drugs. We ran stochastic simulations to calculate the probability 
of resistance emergence, the probability of takeover by a resistant 
strain, the time to resistance emergence and the risk of resistance. 
Importantly, the concentration range between no killing and 
maximal killing is much narrower for AMPs than antibiotics, 
resulting in a much steeper curve. The maximum killing rate of 
AMPs is much higher than of antibiotics, as reflected in quicker 
killing time. These differences between AMPs and antibiotics with 
respect to their pharmacodynamic parameters determine the size 
of the MSW and enable us to assess the influence of the MSW on 
resistance evolution. Another difference relevant to the evolution 
of resistance is the finding that many antibiotics increase mutation 
rates of bacteria, but the AMPs tested so far do not show such an 
effect as they do not elicit bacteria DNA repair responses [78, 79].

Here, we use a pharmacodynamics approach that has been 
widely used to describe sigmoid dose-response relationships to 
study the evolution of resistance in a homogeneous population. 
Our work uses the formulation of pharmacodynamic function. We 
particularly explored how the steepness of the pharmacodynamic 
curve, together with other pharmacodynamic parameters 
determine the probability of resistance emergence [80]. 

The size of the MSW depends on the lower and upper bound 
of the MSW and is calculated as ratio, due to the logarithmic scale 
that is used to plot dose–response relationships;

                              R
MSW

MICSize
MSC

=                                             (1)

To analytically describe the MSW, we use the pharmacodynamic 
function ψ(a), which mathematically describes the net growth 
rate with a Hill function:

                                max( ) ( )a d aψ ψ −=                                         (2)

                 
max min

max
min max

( )( / )
( / ) /

k

k

a MIC
a MIC
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ψ ψ
= −

−
The analytic solution of the MSC is
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The population dynamics of the susceptible and resistant 
strains is captured in the following system of differential 
equations:

          (1 ) 1 [ ]s s n
ds s Rr S d d S
dt K

µ + = − − − + 
 

                (4)

 

     
   1 1 [ ]R s R n
dR s r s Rr R r s d d R
dt

an
K

d
K
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To include the change of antimicrobial concentrations over 
time (pharmacokinetics) into our model, we define the death 
rate to be dependent on the time-dependent antimicrobial 
concentration a(t):

 

     

( )( )
( )

max min

min max

( ) / )
( ( )) , , .

( ) /

k

i k

a t MIC
d a t i S R

a t MIC
ψ ψ

ψ ψ

−
= =

−         (5)

We assume a time-dependent pharmacokinetic function a(t) 
of the following form

      ( )( )  ( ) 1 ,   1, 2,3,....eka

n a e

DKa t e t n
k k

nτ−= − − =  −∑         (6)

We define the treatment dose as the average concentration 
during the course of treatment:

                                          ( )  1  a a t t
t

d= ∫                                      (7)

Therefore, modeling hazard function can be written as

          ( ) ( ) ( ) ( )1, , ,RH a t S a t ps R a a dt
kt

ψ= →∫                   (8)

 In order to generate predictions on antibiotics resistance 
based on pharmacodynamics, one of our main goals of the 
project, we made a number of simplifying assumptions. The 
pharmacodynamics are based on data of initial killing only. 
Moreover, we assume homogeneous populations over time and 
space. We implemented resistance, without considering whether 
resistance mutations are costly or mitigated by compensatory 
mutations. Our simulations suggest that resistance is limited in 
predicting resistance evolution based on pharmacodynamics. 
Expanding the framework to integrate tolerance and resistance 
is possible but would require pharmacodynamic estimates and 
additional functions. Another possible extension of our work would 
be to include pharmacodynamic estimates of resistant strains that 
change over time owing to compensatory mutations and to cross-
resistance or collateral sensitivity when exposed to combinations 
of antimicrobials. Finally, we assumed the same pharmacokinetics 
for all cases in our study. The future empirical work will inform 
realistic parameter estimates for pharmacokinetics. In all cases, 
however, the basis of any analysis concerning antibiotics resistance 
is the influence of individual pharmacodynamic parameters, for 
which we provide a framework.

Conclusion
Consequently, future studies should assess the value of even 

broader data for accurate prediction, ranging from transcriptome 
and proteome to other clinical and epidemiological data, such 
as cross-resistance and history of antibiotic therapy. Integrating 
these information sources from large isolate panels into a single 
predictive framework will lead to a rational basis for introducing 
machine learning in decision-making in public health.
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