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Introduction

There are three variables that can affect human life: food 
scarcity, health problems, and environmental concerns. Food, 
health, and a safe and clean environment are essential for 
human survival. Global population growth is outpacing human 
food needs. Humans demand safe and affordable food. The 
number of deaths worldwide is largely related to human health 
concerns. There are 36 million deaths every year caused by 
noncommunicable and communicable diseases, such as cancer, 
diabetes, AIDS/HIV, TB, and malaria. In third-world countries, 
health care facilities are significantly worse than those in the 
host country. Today, global food production far exceeds human 
needs. Industrial waste is allowed to mix directly with water 
during a time of rapid industrialization, affecting aquatic life and 
humans indirectly. Technology must be used to overcome these 
challenges. Gene engineering involves modern techniques, such 
as molecular cloning and transformation, which are faster and 
more effective than traditional methods of addressing issues in 
agriculture, the environment, and health. Genetic engineering 
differs from conventional breeding, which transfers both specific 
and nonspecific genes to the recipient via a number of approaches, 
including biolistics and AgrobactIn addition, genetic engineering 
strategies have also been used to address environmental issues 
such as converting wastes into biofuels and bioethanol [1-7], 
cleaning up oil spills, carbon, and other toxic wastes, and detecting 
arsenic and other contaminants in drinking water via erium-
mediated transformation [1]. 

A plant’s genome is altered either through homologous 
recombination-dependent gene targeting or through nuclease-
mediated site-specific genome modification. You can also 
use recombinase-mediated site-specific genome integration 
and oligonucleotide-directed mutagenesis [3]. Recombinant 
DNA technology plays a significant role in improving health 
conditions by developing new vaccines and pharmaceuticals. 
New diagnostics, monitoring devices, and therapeutic approaches 
are developed also to improve the treatment strategies. Gene 
manipulation in the process of producing synthetic human insulin 
and erythropoietin is one of the most notable uses of genetic 
engineering to improve health [3] and can also produce new 
types of mutant mice. In addition, genetic engineering strategies 
have also been used to address environmental issues such as 
converting wastes into biofuels and bioethanol [4-7], cleaning up 
oil spills, carbon, and other toxic wastes, and detecting arsenic 
and other contaminants in drinking water. Microbes modified 
with genetic engineering can also be used for biomining and 
bioremediation. DNA recombinant technology contributed to the 
progress of biology and contributed to a number of significant 
developments. Through the modification of bacteria, animals, and 
plants to produce medically important compounds, a large range 
of therapeutic commodities with rapid impact in medical genetics 
and biomedicine have been created [8,9].

Biotechnology pharmaceuticals are mostly recombinant in 
nature, which is crucial in fighting lethal diseases. As a result of 
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recombinant DNA technology, pharmaceutical products changed 
human life to such an extent that the U.S. In 1997, the FDA approved 
more recombinant drugs than in the previous several years 
combined, including anaemia, AIDS, cancers (Kaposi’s sarcoma, 
leukaemia, and colorectal, kidney, and ovarian cancers), and 
hereditary disorders (cystic fibrosis, familial hypercholesterolemia, 
Gaucher’s disease, haemophilia A, severe combined 
immunodeficiency disease, and Turner’syndromsBecause plants 
grow multigame transfer, advanced technologies like as site-
specific integration and precisely regulated gene expression are 
critical [10]. Transcriptional regulation of endogenous genes, their 
efficiency in new environments, and precise control of transgenic 
expression are all key difficulties in plant biotechnology that must 
be addressed [11]. A method of recombining (joining together) 
DNA segments. Recombinant DNA molecules are made up of 
fragments of two or more DNA molecules. DNA molecules made 
from recombinant DNA may enter a cell and multiply under 
specific conditions, either by themselves or after integrating 
into chromosomes. Recombinant DNA molecules (rDNA) can 
be composed of genetic material from various sources (via 
molecular cloning) in the laboratory to create a sequence that 
would not naturally exist in the human genome. Herbert Boyer, at 
the University of California, San Francisco, and Stanley Cohen, at 
Stanford University, produced recombinant DNA for the first time 
in 1973. Plasmids can be inserted with foreign DNA using E. coli 
restriction enzymes [12]. 

Recombinant DNA is DNA created by combining at least two 
strands. Recombinant DNA is possible because DNA molecules 
from all organisms share the same chemical structure and differ 
only in nucleotide sequence within that same overall structure. 
Recombinant DNA molecules are sometimes called chimeric 
DNA since they can be made from two different species, like 
the mythical chimera. The R-DNA technology uses palindromic 
sequences, which results in blunt and sticky ends. DNA sequences 
from any species can be used to make recombinant DNA molecules. 
Plant DNA is linked with DNA from fungi, whereas bacteria DNA 
is linked with human DNA. Further, DNA sequences that do not 
exist in nature can be synthesized chemically and incorporated 
into recombinant molecules. In recombinant DNA technology, any 
DNA sequence can be created using synthetic DNA and injected 
into a variety of living organisms. When recombinant proteins 
are made using recombinant DNA, they are produced within live 
cells. When recombinant DNA encodes a protein, it is not always 
translated into a recombinant protein [13]. The expression of 
foreign proteins usually requires specialised expression vectors 
and substantial rearranging by the foreign codons. Recombinant 
DNA and genetic recombination differ in that the former is created 
in a test tube, while the latter results from the mixing of existing 
DNA sequences in almost every species [14].

Recombinant DNA is also known as rDNA. We need to 
understand DNA before we can get to the “r” part. 

The DNA provides everything necessary for reproducing an 
organism. DNA consists of a sugar base, a phosphate base, and a 
nitrogen base. The nitrogen base adenine (A) is combined with 
thymine (T), guanine (G), and cytosine (C). There are two nitrogen 
bases, A & T and G & C. Nitrogen nuclei are able to assemble in 
an infinite number of ways, and they form a structure known as 
the “double helix,” which is illustrated below. Deoxyribose is the 
sugar used in DNA. All organisms have the same four nitrogen 
bases. Diversity is determined by the sequence and number of 
bases. DNA does not create organisms, only proteins do. RNA 
is translated into mRNA, which is then translated into protein, 
which in turn forms the organism. The way a protein is formed 
changes when the DNA sequence changes. This results either in 
a new protein or in an inactive protein. The recombinant comes 
into play now that we know what DNA is. When a piece of DNA 
is combined with another, it is called recombinant DNA. Thus, 
recombinant! Recombinant DNA can be created by combining 
two or more different strands of DNA. In most cases, recombinant 
DNA is generated by combining two different organisms’ DNAs. 
Recombinant DNA comes into play now that we know what DNA 
is. Recombinant DNA is produced by mixing a portion of one DNA 
strand with another. The term recombinant was subsequently 
coined. Chimeras are recombinant DNA molecules. By connecting 
two strands of DNA, scientists can create a new strand.

Recombinant DNA can be made using three different techniques. 
There are three methods. Three methods. Transformation, Phage 
introduction, and non-bacterial transformation are the three 
methods. Three methods. Here is an overview of each separately. 
DNA fragments are selected to be inserted into a vector as part 
of the transformation process. This part of the DNA is cut with a 
restriction enzyme, and the DNA insert is ligated with DNA Ligase. 
Selectable markers contained in the insert can be used to identify 
recombinant molecules. When a host cell without a vector is 
exposed to an antibiotic, the host with the vector dies, but the host 
without the vector lives since it is resistant. During a process called 
transformation, vectors are introduced into host cells. E. Coli is an 
example of a possible host cell. In order for the host cells to accept 
foreign DNA, they must first be specially prepared. Depending 
on their properties, different vectors can be used for different 
purposes. Different characteristics may distinguish transformed 
hosts from their untransformed counterparts. Several properties 
can be observed, including symmetrical cloning sites, large sizes, 
and high copy numbers. 

It is somewhat similar to the process described above, 
Transformation. A main difference between bacterial and non-
bacterial is that bacteria, such as E, do not serve as hosts. In 
microinjection, DNA is injected directly into the nucleus of the 
host cell being converted. In biolistics, the host cells are sprayed 
with high-velocity micro projectiles such as gold or tungsten 
particles coated with DNA.

http://dx.doi.org/10.19080/AIBM.2021.16.555947


How to cite this article:    Divya s, Archana R, Nidhi S, Deepika J. Technology of Recombinant DNA. Adv Biotech & Micro. 2021; 16(5): 555947.
DOI: 10.19080/AIBM.2021.16.555947003

Advances in Biotechnology & Microbiology

Virus introduction is similar to transfection, except that instead 
of bacteria, phages are used. Packaging of a vector in vitro is used. 
Viruses such as lambda or MI3 are used to build recombinant 
phages. The recombinants that are generated are selectively 
selected by various selection procedures. Recombinant protein 
is produced by the host cell when recombinant DNA is present. 
In the absence of expression factors, this genome is not able to 
produce significant amounts of recombinant proteins. In order for 
a protein to be expressed, a gene must be surrounded by signals 
that provide instructions for transcription and translation by the 
cell. Promoters, binding sites for ribosomes, and terminators 
provide these signals. These signals can be found in expression 
vectors, which are used to introduce foreign DNA into cells. Each 
species has its own signal. E. Coli is unlikely to be able to recognize 
signals from human promoters and terminators, so these signals 
must come from E. Coli signals. If the gene has introns or signals 
that are terminators of the bacterial host, problems arise. 
Recombinant proteins might not be digested, folded, or destroyed 
properly if the process is prematurely terminated. Recombinant 
proteins are generally made by yeast and filamentous fungi in 
eukaryotic systems. Due to needs and the need for support, animal 
cells are difficult to use. There are, however, some proteins that 
eukaryotes cannot make, so bacteria are needed [15].

In the past decade, it has also gained considerable importance 
in the fields of transgenic animals, pest-resistant crops, as well as 
genetically modified foods and drinks. Some of the areas where 
this technology is having a significant impact are as follows: [16]: 

The use of transgenic animals as experimental models in 
biomedical research.

In biomedical research, transgenic fruit flies (Drosophila 
melanogaster) are used as model organisms to develop 
better crops (resistant to insects, pests, herbicides, and harsh 
environmental conditions such as heat).

a.	 A plant that produces its own insecticide.

b.	 Improve product shelf life by cropping.

c.	 Increased nutritional value of crops.

d.	 Virus-resistant crops.

e.	 The hepatitis B vaccine (recombinant)

f.	 The prevention and treatment of sickle cell anemia. 

g.	 Treatment and prevention of cystic fibrosis.

h.	 Detection and prevention of clotting factors.

i.	 Production of insulin.

j.	 Recombinant pharmaceutical production.

k.	 A genetic therapy based on germ line cells or somatic 
cells [16].

l.	 Technology for recombinant DNA synthesis [17]

m.	 These tools include mainly the following:

Polymerases help synthesize, polymerases help cut, and 
ligases help bind. In recombinant DNA technology, restriction 
enzymes are used to determine the position of the desired gene 
within the vector genome. These enzymes come in two forms: 
exonucleases and endonucleases. Endonucleases cut the ends of 
DNA strands, whereas exonucleases remove the middles of DNA 
strands. Restriction endonucleases are sequence-specific and cut 
DNA at specific points. DNA is measured for length and a specific 
site called a restriction site is used to make the cut. This results in 
sticky ends in the sequence. By cutting the desired genes and the 
vectors with the same restriction enzymes, complementary sticky 
notes are created, which makes the ligases’ job easier to bind the 
desired gene to the vector. 

Recombinant DNA technology would be incomplete without 
these tools because they are the ultimate means through 
which a gene is introduced into a host organism. Plasmids 
and bacteriophages are the most commonly used vectors in 
recombinant DNA technology due to their high copy number. The 
origin of replication consists of a sequence of nucleotides from 
which replication begins; the selectable marker, the antibiotic 
resistance gene, and DNA cloning sites, the places included in 
restriction enzymes.

Recombinant DNA technology relies on the host to incorporate 
the desired DNA using enzymes. There are a number of methods 
for incorporating recombinant DNA into the host. 

a.	 The selection of cloning vectors 

b.	 DNA insert into vector to form rec DNA molecule 

c.	 A suitable host is introduced with the rDNA molecule.

d.	 Host cells that have been transformed. 

e.	 The expression and multiplication of DNA-inserted into 
the host. 

Cloning DNA segments of interest from DNA segments of 
interest is the first step in rDNA technology. Enzymatically, this 
DNA segment can then be isolated. The segment of DNA which 
is of interest is known as a foreign insert, target insert or clone. 
Cloning vectors are self-replicating molecules, into which the DNA 
insert is to be integrated. The next step in rec DNA technology is 
to select the best cloning vector. Plasmids and bacteriophages are 
the most commonly used vectors. 

The cleaved endonucleases [in step(i)] have been ligated 
(joined) to the vector DNA by the enzyme ligase to form what 
is known as an insert-cloning molecule. A suitable host cell 
is selected and the rec DNA molecule formed [in step (iii)] is 
introduced into this target cell. Recombinant DNA enters host cells 
by undergoing transformation. In most cases, selected hosts are 
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bacterial cells such as E. coli, but yeast and fungi can also be used. 
A transformed cell (or recombinant cell) is one that has taken up 
a recDNA molecule. The transformed cells are separated from the 
non-transformed cells in this step using various methods that 
make use of marker genes. The foreign DNA should also be tested 
for expression in host cells before being inserted into vector DNA. 
Finally, the transformed host cells should be multiplied to obtain 
sufficient numbers of copies. Genes may also be transferred 
and expressed in another organism if necessary [18]. There 
are many uses for recombinant DNA technology, including the 
development of enzymes applicable to certain food-processing 
conditions. Many essential enzymes are accessible in specific 
manufacturing processes in the food industry due to different 
enzyme roles and functions. The creation of microbial strains 
was another important breakthrough enabled by recombinant 
DNA techniques. Specialized engineering for protease synthesis 
resulted in the creation of different microbial strains that produce 
enzymes. Some fungi strains have been modified to limit their 
production of hazardous compounds [19]. 

In the food industry, lysozymes are effective bacteria-killers. 
They prevent the colonization of microorganisms. Since it extends 

the shelf life of foods like fruits, vegetables, cheese, and meat, it is a 
good agent for storing them. It is possible to prevent food spoilage 
by immobilizing lysozyme in polyvinyl alcohol films and cellulose. 
Lysozyme can also be used to improve the shelf life of fish skin gel 
and inhibit the growth of bacteria that degrade food [20–22]. E. 
coli and Staphylococcus exopolysaccharides. Hydralization of coli 
can be achieved using DSPB, the engineered version of T7. This 
ability of DspB results in a decrease in bacteria population [22]. 
The combination of serine proteases and amylases can be used to 
remove biofilms related to the food industry [23]. S. Salmonella 
infantis, Clostridium perfringens, B. Cereus, Campylobacter jejuni, 
and L. monocytogenes, Yersinia enterocolitica, and some other food 
spoiling microorganisms can be inhibited by glucose oxidase. It 
is also considered A wide variety of foodborne pathogens can be 
killed with this enzyme [22]. A factory that creates recombinant 
proteins for use in medicine recently went into operation, and 
more are in the works to create similar essential proteins for 
medical use. There have been numerous recombinant proteins 
expressed in various plant species for use as enzymes; many 
protein research projects rely on proteins found in milk, and some 
are used in industries and in medicine [24] (Figure 1).

Figure 1: The basic steps of rec DNA Technology using the bacterial plasmid as cloning vector.

http://dx.doi.org/10.19080/AIBM.2021.16.555947


How to cite this article:    Divya s, Archana R, Nidhi S, Deepika J. Technology of Recombinant DNA. Adv Biotech & Micro. 2021; 16(5): 555947.
DOI: 10.19080/AIBM.2021.16.555947005

Advances in Biotechnology & Microbiology

There are many applications of recombinant DNA technology 
in treating diseases and improving health conditions. The 
following sections describe the significant breakthroughs in 
recombinant DNA technology that have improved human health. 
A cutting-edge medical procedure, gene therapy has therapeutic 
potential. The first report of gene therapy treating a genetic 
disorder paved the way for treating the deadliest hereditary 
diseases. In [25,26], there is a question about adoption. Efficacy of 
the method has been demonstrated in the treatment of adenosine 
deaminase deficiency (ADA-SCID), one of the most common 
primary immunodeficiencies. There were several obstacles, 
including the use of PEGylated ADA (PEG-ADA) during gene 
therapy and targeting a T-lymphocyte-specific gene transfer, 
contributed to poor results when the method was introduced 
[27,28]. there are two places to put these. In a later study, 
hematopoietic stem cells (HSCs) were targeted via enhanced gene 
transfer and myeloablative conditioning [29]. There are genes 
associated with adrenoleukodystrophy (X-ALD) and X-linked 
disorders which appear through lentivirus transmission based on 
HIV-1. According to [30], the presence of XALD suggests that true 
HSCs are genetically corrected. 

In the first human genetic disease to be treated with a 
lentiviral vector, a lentiviral vector proved highly effective [31]. 
In 2006, immunotherapy was used to treat metastatic melanoma 
by triggering the production of certain proteins. A new avenue 
for research into the medical use of immunotherapy to treat 
fatal diseases has opened up as a result of this accomplishment. 
According to [32]. In two patients, high levels of cells designed for 
tumour detection in the blood using a retrovirus expressing a T-cell 
receptor led to a significant reduction of metastatic melanoma 
lesions up to a year after infusion. In subsequent studies, this 
technique was applied to metastatic synovial cell carcinoma 
patients. [33]. Cytologous T-cells were genetically modified to 
express a Chimeric Antigen Receptor (CAR) with specificity for the 
B-cell antigen CD19 to treat chronic lymphocytic leukemia. The in 
vivo selection of disease pathogenesis, regardless of the fact that 
genetically modified cells only repair a few progenitors, results 
in the selection for diseases like SCID-X1 and ADASCID. Human 
HSCs can be protected from chemo by combining the gene and 
pharmacological treatment during chemotherapy for glioblastoma 
[34]. Many antibodies and their derivatives have recently been 
produced using plants. In contrast, seven antibodies or antibody 
derivatives met all the requirements out of a large number. This 
antibody, which is made by transgenic tobacco plants, is a type of 
chimeric secretory IgA/G. Streptococcus mutants, a cause of tooth 
decay, can be detected by this antibody. 

The monoclonal antibody T84. 66 detects antigen 
carcinoembryonic, which is still considered an affectively defined 
marker in epithelia malignancies. [35,36]. In transgenic soybean 
cells and Chinese Hamster Ovary (CHO) cells, humanised full-

length IgG1 have been synthesized that can recognize the herpes 
simplex virus (HSV)-2. A glycoprotein B was produced. In mice, 
antibodies from both sources inhibited vaginal transmission of 
HSV-2 after topically applying They could easily prevent infections 
spread during sexual encounters if they worked the same in 
people [37,38]. The 38C13 scFv antibody is based on the idiotype 
of malignant B cells in the well-characterized mouse lymphoma 
cell line 38C13. In mice, antibody administration resulted in 
the development of anti-idiotype antibodies that identified 
38C13 cells, which assisted in the protection of mice against 
lymphoma cells [39,40]. A monoclonal antibody known as PIPP 
recognizes human chorionic gonadotropin. The agroinfiltration 
and transgenesis of tobacco plants enabled them to synthesize 
full-length monoclonal antibodies, scFvs, and diabody derivatives 
[41]. For medicines to function correctly, it is critical to investigate 
the complex system of enzymes and metabolic processes involved 
in their metabolism. Recombinant DNA methods are increasingly 
using heterologous expression, which involves expressing the 
enzyme’s genetic information in vitro or in vivo via gene transfer 
[42,43].

The effectiveness and specificity of conventional vaccines 
are less than those of recombinant vaccines. The nasal delivery 
of adenovirus vectors which contain antigens of disease-causing 
organisms provides a painless, fast and sustainable approach 
to transmitting adenovirus vectors which contain pathogen 
antigens. As a pharmacological vaccine, it induces anti-influenza 
activity in the airways through transgene expression. [44] There 
is now a possibility to produce human growth hormone (FSH) 
using recombinant DNA. A targeted eukaryotic cell line has 
been selected to express FSH since it is a highly complicated 
heterodimeric protein. Technology that uses recombinant DNA 
promotes follicle development for treating assisted reproductive. 
Large numbers of people are receiving treatment with r-FSH. 
Recombination FSH and Luteinizing Hormone (LH), in particular, 
improved ovulation [45,46].

In recent years, human follicle-stimulating hormone (FSH) has 
been produced using recombinant DNA technology. A specific cell 
line from eukaryotes is used to express this complex heterodimeric 
protein. By promoting the development of follicles, recombinant 
DNA can be used for assisted reproductive. Large numbers of 
people are receiving treatment with r-FSH. Recombination of 
r-FSH and Luteinizing Hormone (LH), in particular, was successful 
in enhancing ovulation and conception. Biochemical properties 
and gene expression profiles of metabolic pathways were studied 
using the cultures. In turn cultures, intermediates and key 
enzymes involved in the biosynthesis of secondary metabolites 
can be identified [47,48]. Activating the rolC gene increased 
strawberry nutrition. The sugar content of this gene is increased 
as well as antioxidant activity. Two enzymes are needed for 
anthocyanin glycosylation: glycosyl-transferase and transferase. A 
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number of nutritionally-related genes discovered in strawberries 
are useful for genetic transformation of the strawberries to 
improve one component. The anthocyanin components are 
controlled by the bHLH and FRUITE4 genes in raspberry, whereas 
flavonol is controlled by the ERubLRSQ072H02 gene. Certain 
transformations are able to increase output and quality from 
these genes. [49].

 A collaboration, the University of Tennessee and Oak Ridge 
National Laboratory released genetically modified microorganisms 
for bioremediation purposes, such as strain HK44 of Pseudomonas 
fluorescens. [50,51]. A transposon-based bioluminescence-
producing lux gene was linked to the promoter of the modified 
strain, resulting in increased breakdown of naphthalene 
bioluminescent response. In situ monitoring of bioremediation 
can be achieved using [52]. HK44 detects naphthalene availability 
and biodegradation using bioluminescence signaling [53]. 
In recent years, genetic engineering has been widely used to 
detect and absorb contaminants in drinking water and other 
products. In Torenia, Petunia, and Verbena, insertion of the 
AtPHR1 gene altered their ability to absorb Pi. In contaminated 
aquatic environments, AtPHR1 transgenic plants may contribute 
to effective phytoremediation. [The 54A portion of the AtPHR1 
gene has been introduced into pBinPLUS, a binary vector 
with an improved cauliflower mosaic virus 35S promoter. The 
plasmid used for transformation was pSPB1898 [54,55] using 
Agrobacterium tumefaciens in Petunia and Verbena [56]. The 
relevance of plant metabolic mechanisms in the remediation 
of environmental contaminants has been demonstrated. 
Decomposition or digestion can be difficult for some compounds. 
TNT is only partially digested, so the nitrogen reacts with oxygen 
to produce deadly superoxide. 

The monodehydroascorbate reductase gene is knocked out, 
strengthening the plant’s resistance to TNT. By fine-tuning enzyme 
activity and using knock-out engineering, plants respond more 
effectively to hazardous metals. An enzyme that produces heavy 
metal binding peptides, phytochelatin synthase, was attenuated 
enzymatically to improve heavy metal tolerance [57]. Metabolic 
mechanisms of plants are known to play a critical role in the 
remediation of pollutants in the environment. Decomposition 
and digestion of the compounds are difficult. When TNT is only 
partially digested, nitrogen reacts with oxygen to form deadly 
superoxide. The monodehydroascorbate reductase in plants is 
knocked out to increase their tolerance to TNT. By enhancing 
enzyme activity with knockout engineering, plants can more 
effectively deal with hazardous metals. To improve heavy metal 
tolerance by inhibiting an enzyme that produces heavy metal 
binding peptides, phytochelatin synthase, enzymatic activity 
was attenuated [58]. A BRASSINOSTEROL (BR) is responsible for 
regulating physiological and developmental processes in plants. 
BRs action is the result of phosphorylation and dephosphorylation 
cascades [59].

In the process of producing hydrogen, cyanobacteria break 
down carbon dioxide, a powerful greenhouse gas. A specific 
production process is maintained by correctly using the enzymes 
necessary to create the product. However, advanced techniques 
such as genetic engineering, nutrition manipulation, and 
metabolic engineering are now being used to create cell-free 
systems [60–62]. The commercialization of this energy source 
will help to keep the environment clean, which is impossible to 
achieve with traditional energy sources that emit CO2 and other 
harmful substances [63]. Genetically modified cyanobacteria can 
also convert CO2 into reduced fuel molecules. As a result, carbon 
energy sources will no longer be harmful to the environment. 
In general, this strategy has been successful for a wide range of 
commodity compounds, primarily energy carriers, such as short 
and medium chain alcohols [64]. G. sulfurreducens conductive 
biofilms are promising sources in the fields of renewable energy, 
bioremediation, and bioelectronics. The electron acceptor CL-1 
produced biofilms that were six times more conductive than wild-
type biofilms when cultured with electrode. When the PilZ gene 
producing proteins was deleted from the G. The sulfurreducens 
genome became more active compared to wild-type. CL-1Ln has 
been isolated from a strain in which the gene GSU1240 has been 
removed. The strain has a high conductivity and a low formal 
potential, reducing potential losses in microbial fuel cells. Lower 
losses increase potential energy [65].

The fact that many recombinant pharmaceuticals are 
manufactured with microbial cells suggests that several obstacles 
come into the way of their production of functional proteins, but 
these can be overcome by altering cellular mechanisms. The main 
obstacles to gene expression are posttranslational modification, 
the activation of cell stress responses, and the instability of 
proteasomal activity. Oftentimes, human genetic mutations lead 
to insufficiencies in protein synthesis, which can be rectified by 
incorporating genetic material to close these gaps and bring levels 
back to normal. Escherichia coli is being used in recombinant 
DNA technology as a platform for producers to use controlled 
processes to produce the required molecules at an affordable cost 
[66,67]. In addition to allowing the analysis and manipulation of 
yeast genes in the test tube, recombinant DNA research offers 
considerable potential for studying yeast biology in greater depth. 
Most importantly, yeast is now able to be turned into cloned 
genes by transforming them with DNA and selecting selectable 
markers developed for this purpose. Molecular and traditional 
genetic manipulations of yeast are now both possible because 
of technological advancements. Recombinant DNA has proved 
most effective in addressing biological issues centered around the 
structure and organization of individual genes [68,69]. 

Recent breakthroughs in recombinant DNA technology 
have brought about profound changes in the research area and 
opened up interesting and advanced avenues for biosynthetic 
pathway research. ACTIOMYCETES are used for pharmaceutical 
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productions, such as the production of nutrients and drugs 
for health science research. A significant proportion of the 
biosynthetic compounds comes from these sources and as such 
has been considered in the design of recombinant drugs. Their 
compounds were found to be more effective against a wide 
range of bacteria and other pathogenic microbes in clinical 
trials. Additionally, these compounds have shown antitumor and 
immunosuppressive properties [70]. Technology that makes use 
of recombinant DNA can prevent and treat genetic disorders. 

The development of DNA vaccines is an innovative method 
of providing immunity against several diseases. This process 
involves the delivery of DNA that contains pathogenic genes. 
In clinical trials, human gene therapy is mostly used to treat 
cancer. Transfection efficiency has been studied in relation to the 
design of gene delivery systems in recent years. The idea of using 
transfection for cancer gene therapy with minimal side effects is 
still being investigated, including for cases of brain, breast, lung, 
and prostate cancer. There are also considerations of gene therapy 
for renal transplantation, Gaucher disease, hemophilia, Alport 
syndrome, and renal fibrosis [71].
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