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Abstract

Concrete is the primary construction material but is prone to cracking, leading to high maintenance costs. Fiber-reinforced bio concrete, using
microbial-induced calcite precipitation (MICP), enhances durability and self-healing. Conventional concrete, with a compressive strength of
30-40 MPa, can incur maintenance costs up to 3.3 times its production cost. This study evaluates the effectiveness of Fiber-reinforced bio con-
crete in improving structural performance and sustainability. It compares conventional and Fiber-reinforced bio concrete, explores MICP-driven
self-healing, and examines bacteria, mixing methods, mechanisms, and contributing factors. Environmental benefits, bacteria-Fiber integration,
and economic hurdles, especially in developing nations, are addressed. Bio concrete heals cracks up to 0.8mm, reducing repair costs by 40% and
extending lifespan by 20-30 years. Natural Fibers boost tensile strength by 50% and heal smaller cracks (0.1 mm).

Keywords: Fiber-Reinforced Bio concrete; MICP; Self-Healing Concrete; Tensile Strength; Sustainability.

Abbreviations: MICP: Microbially Induced Calcite Precipitation; C-S-H: Calcium Silicate Hydrate

Introduction

Concrete is essential in modern construction, valued for its
strength, durability, and cost-efficiency [1]. However, it is prone
to cracking due to factors like thermal stress and design flaws
[2]. Even minor cracks, as small as 0.1 mm, can compromise
structural integrity and result in repair costs that far surpass the
initial production expenses [3]. Bio concrete presents a significant
advancement by using Microbially Induced Calcium Carbonate
Precipitation (MICP) to autonomously repair cracks up to 0.8
mm through the action of bacteria such as Bacillus pasteurii [4].
This innovation not only cuts repair costs by up to 40% but also
extends the lifespan of concrete structures by 20-30 years, while
reducing environmental impact [5]. Moreover, incorporating
natural Fibers like hemp or flax into bio concrete enhances
its mechanical strength and resilience [6]. Fiber bio concrete
effectively combines the self-healing benefits of bio concrete
with the added durability of natural Fibers [7], offering a robust,
sustainable, and cost-effective alternative to traditional concrete.

Self-healing concrete technology is transforming structural
repair by addressing cracks and enhancing durability [8].
Autogenous healing, utilizing natural chemical processes like
the formation of calcium carbonate or calcium silicate hydrate,
effectively seals crack up to 0.18 mm but may not address larger
or rapidly forming cracks [9,10]. Autonomous healing methods,
on the other hand, incorporate microbial agents into concrete,
such as calcite-precipitating bacteria from the genus Bacillus [11].
These bacteria produce calcium carbonate to seal cracks up to
0.8 mm wide, reducing repair costs by up to 40% and extending
concrete lifespan by 20-30 years [12]. Microbially Induced Calcite
Precipitation (MICP) enhances this process by using bacterial
cells to precipitate calcium carbonate from saturated solutions,
with optimized strains like Bacillus pasteurii showing up to 30%
improved efficiency [13]. Bacteria such as Bacillus cereus and
Bacillus safensis further improve concrete properties, including
increased compressive and tensile strength, and reduced water
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absorption and chloride permeability [14]. Fiber-reinforced bio
concrete, combining bacteria with natural Fibers, demonstrates
significant improvements in strength and durability, offering
up to 63% better tensile strength and enhanced resistance to
environmental damage [15], making it a robust solution for
modern infrastructure challenges.

Fiber-reinforced bio concrete, known for its self-healing
properties and extended lifespan, faces significant economic and
practical hurdles. Despite its advantages in reducing maintenance
and prolonging structural integrity, the initial production costs
are 2.3 to 3.9 times higher than conventional concrete, largely
due to expensive bacterial cultures and nutrients [16]. This
cost disparity poses a challenge for widespread adoption, as
investors and contractors often prioritize immediate expenses
over long-term benefits [17]. In developing countries, additional
barriers include limited resources, technical expertise, and high
complexity, further hindering the practical application of bio
concrete [18]. Recent research across various countries shows
promising improvements in repair effectiveness and mechanical
properties, but scaling up remains difficult due to these economic
and logistical constraints [19]. Addressing these challenges
through cost-reduction strategies, technical skill development,
and increased investment is crucial for making bio concrete a
viable option for broader global use.

Concrete’s widespread use in modern construction means
that damage to these structures is often unavoidable [20]. To
tackle this issue, exploring effective solutions is crucial, and Fiber
bio concrete emerges as a leading candidate [17]. This material
is designed to address micro cracks tiny fractures that appear
at the early stages of damage. By healing these micro cracks,
Fiber bio concrete helps prevent the formation of larger, more
damaging cracks [21]. This review examines a range of studies
from reputable journals published over the last decade. It begins
by comparing conventional concrete with fiber bio concrete and
then delves into the self-healing properties of concrete through
microbially induced calcite precipitation (MICP), focusing on the
role of bacteria, their mixing methods, mechanisms, pathways,
and relevant factors. The review also highlights the environmental
benefits and properties of fiber bioconcrete and suggests
incorporating bacteria with natural fibers based on experimental
findings. Finally, it discusses the economic and practical challenges
of fiber bioconcrete, especially in developing countries.

Concrete, bioconcrete and fiber bioconcrete

Concrete is a cornerstone of modern infrastructure, utilized
extensively in the construction of buildings, dams, bridges, and
other critical structures due to its high compressive strength,
durability, availability, and cost-effectiveness. Typically composed
of 10-15% cement, 60-75% aggregates, and 15-20% water by
volume, concrete offers numerous advantages [22]. However, its
susceptibility to cracking presents a significant challenge [23].
Cracks can occur during both the plastic and hardened states of

concrete due to various factors such as formwork movement,
plastic shrinkage, thermal stress, and errors in design or
construction [24]. While reinforcement bars can increase tensile
strength by approximately 10-15 MPa and help control crack
width, they do not entirely prevent crack formation [25]. These
cracks, even those as small as 0.1 mm, can compromise the
structural integrity of concrete over time, leading to substantial
repair costs that can reach $147 per cubic meter significantly
higher than the initial production cost of $65 to $80 per cubic
meter [26]. Consequently, there is a pressing need for preventive
strategies that can manage and mitigate crack formation, thereby
extending the lifespan and sustainability of concrete structures
[16]. By effectively addressing cracks as small as 0.1 mm, such
strategies could reduce repair costs by up to 60% and extend
the lifespan of concrete structures by an additional 25-40
years, thereby significantly enhancing both the durability and
sustainability of modern infrastructure.

Bioconcrete has emerged as a revolutionary solution to the
cracking issue inherent in traditional concrete. By incorporating
Microbially Induced Calcium Carbonate Precipitation (MICP)
technology, bioconcrete takes advantage of natural processes
to autonomously heal cracks as they develop [27]. Ureolytic
bacteria, such as Bacillus pasteurii, are embedded within the
concrete matrix at a concentration of approximately 10° cells
per millilitre and become active when cracks as small as 0.3 mm
form [28]. These bacteria metabolize urea present in the concrete,
producing calcium carbonate as a byproduct [32]. The calcium
carbonate, which can precipitate at a rate of 1-2kg/m? of concrete,
then fills cracks, effectively sealing them and restoring the
concrete’s structural integrity [33]. This self-healing capability
can repair cracks up to 0.8 mm wide, significantly reducing the
need for manual repairs, lowering associated costs by up to
40%, and extending the longevity of concrete structures by an
estimated 20-30 years [34]. Moreover, bioconcrete aligns with
sustainability goals by minimizing environmental impacts such
as carbon emissions and waste generation, which are typically
associated with traditional repair methods [35]. Bioconcrete
not only enhances the durability of concrete but also contributes
to a more sustainable approach to construction [36] (Table 1).
Incorporating bioconcrete can effectively heal cracks as small as
0.3 mm, significantly reduce repair costs by up to 40%, and extend
the lifespan of concrete structures by 20-30 years, demonstrating
a superior approach to enhancing both the durability and
sustainability of modern infrastructure while addressing the
limitations of traditional concrete.

Despite the numerous benefits of bioconcrete, certain
challenges can limit its effectiveness. The self-healing process
may not fully address larger cracks (greater than 0.8 mm) or
those that develop quickly under high stress, potentially leading
to incomplete repairs and structural weaknesses [37] (Figure
1). Additionally, the uneven distribution of bacteria within the
concrete matrix can result in inconsistent healing across the
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structure [38]. To overcome these limitations, the integration of
fibers into bioconcrete has proven to be an effective solution [39].
By incorporating 0.5-1.5% by volume of natural fibers like hemp,
flax, or coconut, fibers enhance the tensile strength and ductility
of concrete, increasing tensile strength by 20-50% and improving
its ability to absorb energy (toughness) [40]. These fibers help
control crack formation by bridging and distributing stress
more evenly across the concrete matrix [41]. Fiber bioconcrete
can effectively heal micro cracks as small as 0.1 mm before they
expand into larger, more damaging cracks, preventing significant
structural losses [32]. Natural fibers, with a tensile strength
ranging from 200 to 1,200 MPa, are particularly advantageous
due to their sustainability [42]. These fibers not only improve

the mechanical properties of the concrete but also contribute to
a lower environmental impact, being renewable, biodegradable,
and having a smaller carbon footprint compared to synthetic
alternatives [43]. Fiber bioconcrete, as detailed in the table below,
represents a synergisticapproach that combines the microbial self-
healing properties of bioconcrete with the mechanical resilience
provided by natural fibers, offering a durable, sustainable solution
for modern construction needs [44]. Thus, incorporating natural
fibers into bioconcrete enhances its durability by bridging micro
cracks as small as 0.1 mm, increasing tensile strength by 20-50%,
and preventing significant structural damage, thereby offering a
robust, cost-effective, and environmentally sustainable solution
for construction.
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Figure 1: Issues and Solutions of Bioconcrete [32, 37-44].
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Self-healing concrete and MICP

Self-healing technologies for concrete are revolutionizing
structural repair by addressing and mitigating cracks, crucial
for extending the lifespan and enhancing the durability of
Autogenous healing leverages natural
chemical processes to seal cracks [45]. This technique relies on
the formation of calcium carbonate or calcium silicate hydrate
(C-S-H) through the reaction of carbon dioxide and water with
the concrete’s hydration products [46]. These naturally occurring
compounds can effectively seal cracks up to approximately 0.18

concrete structures.

mm in width [47]. To enhance this process, additional materials
such as magnesium oxide or bentonite can be introduced, which
improve the efficiency of crack sealing for initial cracks [48].
These additions react with the concrete matrix to accelerate the
formation of sealing compounds, providing a more robust initial
repair [49]. While autogenous healing offers a cost-effective
solution for minor cracks, it does not fully address the challenge
of larger or more rapidly developing cracks [50]. Conclusively,
autogenous healing can manage cracks up to 0.18 mm and, with
added materials, can improve initial crack sealing efficiency, but it
may not be sufficient for more extensive damage.
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In contrast, autonomous healing methods use a combination
of biological and chemical agents to repair cracks more effectively.
This approach involves incorporating microbial agents into the
concrete mix or applying biological mixtures to existing cracks
[51]. Microbial ureases hydrolyse urea to produce ammonia and
carbon dioxide, which then react with calcium ions in the concrete
to form calcium carbonate [52]. This process can heal cracks
up to 0.8 mm wide autonomously. The integration of calcite-
precipitating bacteria, such as those from the genus Bacillus, is a
key component of this method [53]. These bacteria are embedded
in the concrete matrix and become active when cracks form. They
metabolize urea to produce calcium carbonate that fills and seals
the cracks, thereby restoring the concrete’s structural integrity
[54]. This method not only reduces the need for manual repairs
but also extends the lifespan of concrete structures significantly
[55]. Autonomous healing methods can address cracks up to 0.8
mm in width, demonstrating up to a 40% reduction in repair costs
and significantly extending the lifespan of concrete by 20-30 years
compared to conventional methods.

Microbially Induced Calcite Precipitation (MICP) further
enhances the effectiveness of autonomous healing. In MICP,
microbial cells in a solution saturated with calcium and carbonate
ions produce calcium carbonate as a metabolic byproduct
[56]. During this process, microorganisms release metabolic
products like CO,*,
to precipitate calcium carbonate [57,58]. Urea hydrolysis by
bacteria, especially Bacillus pasteurii, is a well-studied method
for inducing calcium carbonate formation [59]. Research has
focused on optimizing MICP with genetically modified strains,
such as BP-M-3, which exhibit increased urease activity and

which react with environmental Ca?* ions

enhanced calcite precipitation capabilities [60]. MICP can achieve
precipitation rates up to 30% higher than traditional methods,
significantly improving repair efficiency [61]. This rapid and
effective formation of calcium carbonate, facilitated by bacterial
cell surfaces that provide nucleation sites, demonstrates MICP’s
potential for diverse applications in environmental engineering
and construction [62]. By integrating MICP, concrete can achieve
superior repair capabilities and durability, with increased calcium
carbonate precipitation rates contributing to up to 30% more
effective self-healing and a substantial reduction in maintenance
needs.

Role of bacteria in enhancing self-healing concrete

Bacteria play a pivotal role in Microbially Induced Calcium
Carbonate Precipitation (MICP), which enhances the self-healing
capabilities of fiber-reinforced concrete. Key bacterial species
such as Bacillus pasteurii, Bacillus sphaericus, and Bacillus
subtilis are particularly effective due to their ability to produce
urease enzymes [63]. These enzymes hydrolyse urea to generate
ammonia and carbon dioxide, which then interact with calcium
ions to form calcium carbonate crystals [64]. For example, Bacillus
pasteurii and Bacillus sphaericus can restore the flexural strength
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of concrete by up to 2.6 times under optimized conditions, such
as with specific concentrations of calcium lactate [65]. Similarly,
Bacillus subtilis has been observed to increase compressive
strength by 25.9%, highlighting the significant impact of bacterial
MICP on improving concrete properties [66]. The integration of
these bacteria into fiber-reinforced concrete not only facilitates
the formation of calcium carbonate but also helps in filling cracks
and enhancing the overall structural integrity [67]. Bacterial
MICP can improve concrete’s flexural strength by up to 2.6 times
and its compressive strength by 25.9%, demonstrating a robust
enhancement in concrete durability and repair.

Bacteria are preferred over other microorganisms for MICP
due to their resilience and adaptability to the harsh conditions
within concrete. They can tolerate high alkalinity and nutrient
scarcity, thanks to their negatively charged cell walls which
promote effective calcium carbonate precipitation [68]. The
ability of bacteria to form spores enables them to endure extreme
environmental conditions, making them more suitable for long-
term applications in concrete compared to fungi or algae [69]. The
incorporation of bacteria like Bacillus cereus and Bacillus safensis
has been shown to significantly improve concrete durability, such
as reducing water absorption and chloride permeability [70].
Specifically, Bacillus cereus has been effective in lowering water
absorption and chloride permeability, while Bacillus safensis
contributes to substantial healing effectiveness and strength
recovery [71]. These advantages, combined with the synergistic
effects of bacteria and fibers, underline the suitability of bacteria
for enhancing the longevity and resilience of self-healing concrete
structures [72]. Bacteria can reduce water absorption and
chloride permeability significantly, demonstrating their vital role
in enhancing the durability and effectiveness of concrete repairs.

Bacteria mixing techniques in concrete

Mixing techniques for incorporating bacteria into concrete are
pivotal for enhancing the self-healing properties of construction
materials. Direct mixing involves integrating bacterial cells
directly into the concrete mixture, using strains that can survive
the alkaline conditions of cement-based materials to ensure
[73]. Alternatively, indirect mixing methods
encapsulate bacteria within protective materials before adding
them to the concrete mix [74] (Figure 2). This technique allows
for the controlled release of bacteria over time, which improves
their ability to heal cracks within the concrete matrix [75]. To
counteract potential strength reduction from bacterial inclusion,
natural fibers are often added [76]. These fibers not only
reinforce the concrete but also provide a conducive environment
for bacterial activity, thereby preserving or even enhancing the
overall strength of the material [77]. Encapsulated bacteria can be
released in a controlled manner, significantly boosting self-healing

effectiveness

efficiency while natural fibers address any negative impact on
concrete strength.

Zeenat K, Daud K. Reviewing Microbial Calcite Precipitation in Fiber Bioconcrete: Advancing Durability and Sustainability in
Construction. Adv Biotech & Micro. 2024; 18(3): 555989. DOI: 10.19080/AIBM.2024.17.555989


http://dx.doi.org/10.19080/AIBM.2024.17.555989

Advances in Biotechnology & Microbiology

e N
Meat- s
todgrant 0
U vy
B .
- Application to sebl-healing condrete
¥ Sl * AlialeepHopto 12-13
= Encapsulation
p of spores and nutrient . High
ideal COP-capabla bactaria Lt
for concrete application + L S
CONOEALr TR
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Combining natural fibers with bacteria in concrete offers a
synergistic approach to improving both mechanical properties
and self-healing capabilities. Natural fibers, such as jute, hemp,
or bamboo, are integrated into the concrete matrix to enhance
its tensile and flexural strength, providing critical reinforcement
[78]. These fibers also create a favourable microenvironment for
bacterial growth, which is essential for the effective formation
of calcium carbonate and subsequent crack repair [79]. This
dual approach not only enhances the structural integrity of the
concrete but also extends its service life by promoting sustained
self-healing over time [80]. The incorporation of natural fibers
reduces the risk of cracks expanding into larger structural failures,
thus maintaining the integrity and durability of the construction
[81]. This combination leads to improved durability, reduced
maintenance costs, and increased resilience, demonstrating that
integrating bacteria with natural fibers significantly advances the
performance and sustainability of concrete materials [82]. This
approach can enhance tensile strength by up to 50% and improve
the crack-healing capacity, making it a robust solution for modern
infrastructure challenges.

Mechanism and pathways of calcite precipitation

The mechanism of calcite precipitation is a multi-step process
that begins when a solution becomes supersaturated with calcium
carbonate ions (CaCO,) (Figure 3). This oversaturation can result
from changes in temperature, pressure, or chemical composition
[83]. When the concentration of CaCO, exceeds its solubility
limit, nucleation occurs [84]. During this phase, individual ions

begin to cluster together, forming small nuclei [85]. These nuclei
then grow into larger crystalline structures through a process
known as crystal growth. In crystal growth, additional CaCO, ions
continuously attach to the surface of existing crystals, causing them
to expand in size [86]. This growth continues reducing nitrates
or nitrites to nitrogen gases. Amino acid deamination and the
sulphur cycle further offer alternative mechanisms by producing
ammonia or affecting sulphate ion availability, respectively [87].
These pathways provide additional methods for enhancing MICP,
especially in attach to the surface of existing crystals, causing them
to expand in size. This growth continues until the solution reaches
equilibrium and is no longer supersaturated [88]. The formation
of calcite crystals can be influenced by several factors, including
the presence of impurities, pH levels, and the presence of organic
molecules or microbial activity. These factors play a critical role in
determining the rate and quality of crystal formation [89]. Overall,
the mechanism of calcite precipitation involves the nucleation
and growth of calcium carbonate crystals from a supersaturated
aqueous solution, with various environmental and chemical
conditions affecting the efficiency and characteristics of the
process [90]. The rate of crystal growth and the final size of calcite
crystals can be significantly influenced by the concentration of
calcium ions and the conditions of the solution. Under controlled
conditions, the rate of precipitation can be enhanced by optimizing
factors such as temperature, pH, and the presence of specific
nucleation agents, potentially increasing calcite formation by up
to 30% and improving the overall quality of the crystals produced.
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Figure 3: Calcite Production Process [23, 36].

Microbially Induced Calcite Precipitation (MICP) is driven
by various metabolic pathways utilized by microorganisms to
precipitate calcium carbonate (Table 2). Among these, ureolysis
is the most prominent, where bacteria such as Bacillus and
Sporosarcina convert urea into ammonia and carbon dioxide
through the enzyme urease [91]. This process increases the pH
of the solution, leading to calcium carbonate precipitation [92].
Ureolysis is valued for its efficiency and cost-effectiveness, often
improving mineral precipitation rates by up to 40% compared to
other methods [93]. It operates effectively across a wide pH range
(7.0 - 9.5) and benefits from easy nutrient availability, making it a
preferred method in environmental and engineering applications
[94]. Beyond ureolysis, MICP encompasses several alternative
metabolic pathways that also contribute to mineral formation.
Denitrification, for instance, facilitates mineral precipitation
under anaerobic conditions by environments where ureolysis may
be less suitable [94]. The exploration and optimization of these
pathways can lead to increased calcite precipitation efficiency and
broader applicability, with potential improvements in yield and
process effectiveness reaching up to 30% in specific scenarios.

Factors influencing MICP

The efficacy of Microbially Induced Calcite Precipitation
(MICP) is significantly influenced by various factors, including
temperature, substrate availability, pH levels, bacterial type,
bacterial cell concentration, and concentrations of urea and
calcium ions (Table 3). Temperature is a critical factor, with
the optimal range for MICP typically between 30-35°C, where
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bacterial growth and enzyme activity are maximized, leading
to robust calcium carbonate precipitation [95]. Deviations from
this temperature range can hinder bacterial activity and reduce
precipitation efficiency [96]. Substrate availability, particularly the
use of industrial wastewater rich in organic content and calcium,
also plays a pivotal role [97]. However, the presence of inhibitory
compounds in wastewater necessitates careful management to
avoid adverse effects on bacterial growth and precipitation rates
[98]. Addressing these challenges through comprehensive pilot
studies can enhance the scalability and sustainability of MICP
processes by up to 40%.

In addition to temperature and substrate availability, the
pH level, type and concentration of bacteria, and concentrations
of urea and calcium ions critically impact MICP efficiency. A
slightly acidic to neutral pH range is preferred for optimal
carbonate precipitation and bacterial activity [107]. The choice
of bacterial strain and concentration affects urease activity
and calcium carbonate precipitation, with higher bacterial cell
concentrations enhancing calcite precipitation by providing
additional nucleation sites [108, 109]. Moreover, managing urea
and calcium concentrations is essential, as excessive levels can
decrease efficiency [110, 111]. Innovations such as multi-batch
reactor systems can address challenges related to bacterial re-
use, potentially reducing continuous bacterial supply needs and
lowering treatment requirements [112, 113]. By optimizing these
factors, MICP efficiency and calcium carbonate precipitation
can be increased by up to 40%, with effective bacterial sourcing
potentially boosting yields by up to 50%.
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Table 1: Comparative Analysis of Conventional Concrete, Bioconcrete, and Fiber Bioconcrete.

Traditional Concrete Bioconcrete Fiber Bioconcrete

Compressive Strength 30-40 MPa 30-45 MPa 35-50 MPa

(MPa)

Tensile Strength
(MPa) 2-5 MPa 2-6 MPa 5-8 MPa
Heals cracks up to 1.2 mm with enhanced
Crack Width Healing Heals cracks up to 0.2 mm (with Heals cracks up to 0.8 mm autono- distribution of stress and improved
Capacity external repair methods) mously through MICP healing; effectively prevents large crack

formation

Lower environmental impact, especially

. - - 200 . .
High carbon emissions (~0.93 tons | 20-30% reduction in environmental with natural fibers; ~40% lower carbon

Environmental Impact

CO, per ton of cement) impact due to fewer repairs footprint
Durability Moderate High Very High
P Requires frequent maintenance; Autonomous crack healing extends | Superior crack control and healing, highly
Application in Struc- ; . . . e
. crack prevention relies on reinforce- lifespan by 20-30 years, reduces resilient under stress; reduces long-term
tural Integrity f .
ment bars maintenance costs repair needs
References [29] [30] [31]
Table 2: 0 Routes of Calcium Carbonate Precipitation [19, 85].
Pathways Involved in MICP
Types Autotrophic Heterotrophic
) ) . anoxygenic . P R :
Methodology non-methylo tI‘OPth Oxygenic Photosynthesis photo-syn- Ureol.ytlc D1551m11at10n of 0x1-dat10n of or
methano genesis thesis Strains Nitrate ganic compounds
Nutrients Organic matter Organic matter Organic Ammonia Nitrogen & Carbonic Organic matter
matter acid
lon’s formation Nil Nil Nil Co,* 3HCO, & 2C0,* 5Ca (OH)2
pH level 6.5-8.5 7.0-9.0 6.5-8.5 7.0-9.5 7.0-8.5 6.5-8.5
Oxygen level Zero High Zero Moderate Zero Moderate
Depends
Chemical Com- Methano-gens Organic compounds on the tyPe Urea Formic Acid Calcium Lactate
pounds of bacteria
used.
Bacillus pseudo-
Bacillus Denitobacilus, Thio- firmus, Bacillus
Halo-bacte- Sphaericus, bacilus, Alcaligenes, subtilis, Bacillus
Examples Methano-bacterium Cvno-bacterium genus rium and He- Bacillus Pseudomonas, Spi- cohnii, Bacillus
p specie. Y 8 lio-bacterium pasteurii, rilium, Achromobac- | alkalinitrilicus, Ba-
species and Bacillus teri, and Microoccus | cillus thuringien-
subtilis species sis, and Bacillus
halodurans
Table 3: Studies on Impact of Variables on MICP.
S.No Factors Influence References
1 Temperature Affects enzyme activity and bacterial growth raotes, with soptimal range typically between [99]
30-35°C
2 Substrate availability Industrial wastewater is a potential sourc:éik())l:lt inhibitory compounds require consider- [100]
3 pH levels Slightly acidic to neutral range preferred for carbonate precipitation and bacterial activity [101]
4 Bacteria type Different types exhibit varying urease aCtl\.llltY and calcium carbonate precipitation capa- [102]
bilities
5 Bacteria cell concentration High concentrations increase calcite precipitation by providing nucleation sites [103]
6 Urea and Ca* concentrations Optimal concentrations necessary for eff1c1ent.ce.1lC1te precipitation, high concentrations [104]
decrease efficiency
7 Isolation of ureolytic bacteria Potent urease-producing bacteria essentlatlaftci)(r’rrl)romotmg ureolysis-driven calcite precipi- [105]
8 Bacterial Re-Use Challenges posed by reduced activity n.eFeSSItate mr?ovatlve solutions for maintaining [106]
MICP efficiency over time
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Table 4: Previous Research and their Findings in Various Countries.

Country

Findings

References

Pakistan

Fiber-immobilized bacteria achieved healing rates of around 75-85% within 7 days and 60-65% within 28 days
for pre-cracked specimens.

[124]

China

The combined impact of bacteria and fiber may lead to enhanced repair effectiveness, improved mechanical
characteristics, and increased recovery of water resistance.

[125]

Columbia, USA

The combination of both bacteria and PVA fiber exhibits superior performance in ensuring the long-term dura-
bility of repaired concrete.

[51]

Saudia Arabia

Using both fibers and bacteria can influence concrete characteristics, with natural fibers offering benefits. Sub-
stituting aggregates with coated recycled aggregate improves mechanical properties by promoting bacterial-in-
duced precipitate growth. The incorporation of 1.5% steel fibers and 1% glass fiber into the bacterial concrete
mixture improves the 28-day compressive strength in comparison to plain concrete or concrete containing
solely steel fibers.

[79]

Philippines

The inclusion of polypropylene fibers and bacterial cultures could significantly boost the strength, durability,
and self-healing capacity of geopolymer mortars.

(80]

Properties of fiber bioconcrete

Fiber-reinforced bioconcrete, enhanced with bacteria

and biomineralization techniques, showcases significant
improvements in key properties compared to traditional concrete.
The integration of bacterial species such as Bacillus pasteurii,
Bacillus subtilis, and Bacillus sphaericus with fibers has been
shown to enhance the mechanical performance and durability
of concrete [114]. These bacteria contribute to the self-healing
properties of the concrete by precipitating calcium carbonate,
which effectively fills micro-cracks and voids within the concrete
matrix [115]. For example, studies have demonstrated that
bacterial incorporation can lead to substantial increases in
compressive and tensile strength, with some results indicating a
42% increase in compressive strength and a 63% improvement in
tensile strength after 28 days of curing [116]. This enhancement is
primarily attributed to the formation of a more compact and less
porous matrix, which significantly improves the overall strength
and resistance of the concrete to various forms of degradation,
such as chloride penetration and water absorption [117].
The addition of fibers further complements these benefits by
reinforcing the concrete, thus improving its resistance to cracking
and overall durability, and extending its lifespan.

Moreover, the use of fibers in combination with bacteria
contributes to improved resistance against environmental factors
and damage. The incorporation of fibers helps to distribute
stress more evenly across the concrete, reducing the likelihood of
crack propagation and thereby enhancing the concrete’s overall
toughness [118, 119]. The biomineralization process facilitated
by bacteria not only enhances mechanical properties but also
contributes to a reduction in water permeability and chloride
ion diffusion [120]. For instance, the use of bacterial strains like
Bacillus cereus and Bacillus safensis in fiber-reinforced concrete
has been shown to decrease water absorption and chloride
permeability, thereby further enhancing the material’s resistance
to environmental stressors [121, 122]. This combination of
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bacterial self-healing and fiber reinforcement makes fiber
bioconcrete a promising material for applications requiring high
durability and sustainability, particularly in environments subject
to severe conditions [123-125]. The synergy between bacterial
precipitation and fiber reinforcement results in a more resilient
and long-lasting construction material, offering performance
improvements of up to 40% over conventional concrete in terms
of strength and durability.

Economic and practical challenges of fiber bioconcrete

The adoption of fiber-reinforced bioconcrete is constrained
by its high production costs compared to conventional concrete.
Studies reveal that microbial concrete is 2.3 to 3.9 times more
expensive than traditional concrete, primarily due to the costs
associated with bacterial cultures and nutrients, which account
for approximately 80% of the raw material costs [126]. This
economic challenge is exacerbated by the focus of investors and
contractors on the immediate costs rather than the long-term
benefits such as extended building life and reduced maintenance
needs [127]. Despite the promising self-repair capabilities of
bacterial concrete, which could potentially lower the total cost
of ownership over time, these benefits are not readily apparent
and are overshadowed by the substantial initial investment [128].
In response, ongoing research is focused on reducing production
costs by exploring cheaper nutrient sources and developing more
cost-effective methods for bacterial culturing [129]. Nevertheless,
the high cost remains a major barrier to the widespread adoption
of bioconcrete in the construction industry.

In developing nations, the implementation of fiber-enforced
bioconcrete faces additional challenges including high costs,
limited resources, and a shortage of specialized skills. While
bioconcrete offers significant advantages such as automatic
self-healing and reduced waste, its use is largely experimental
and confined to research settings due to its complexity and high
cost [130] (Table 4). The obstacles are particularly pronounced
in regions with constrained resources and limited technical

Zeenat K, Daud K. Reviewing Microbial Calcite Precipitation in Fiber Bioconcrete: Advancing Durability and Sustainability in

Construction. Adv Biotech & Micro. 2024; 18(3): 555989. DOI: 10.19080/AIBM.2024.17.555989


http://dx.doi.org/10.19080/AIBM.2024.17.555989

Advances in Biotechnology & Microbiology

expertise, where handling living organisms and advanced
materials poses significant difficulties [131]. Addressing these
challenges will require substantial investment in research, skill
development, and awareness programs to ensure the safe handling
and effective use of bioconcrete materials [132]. Although current
research demonstrates promising results, scaling up the use of
bioconcrete in developing countries will depend on overcoming
these economic and practical barriers [133]. This highlights
the need for continued innovation and funding to make this
sustainable technology more accessible on a global scale, with
potential reductions in costs of up to 50% making it feasible for
broader application.

Conclusion

Concrete, bioconcrete, and fiber bioconcrete offer significant
quantitative
materials. Conventional concrete, known for its compressive
strength of 30-40 MPa, is prone to crack formation, which results
in repair costs of up to $147 per cubic meter, compared to its initial
production cost of $65-80 per cubic meter. In contrast, bioconcrete,
which leverages Microbially Induced Calcite Precipitation (MICP)

advancements over traditional construction

technology, can autonomously heal cracks up to 0.8 mm, reducing
repair expenses by up to 40% and extending the lifespan of
structures by 20-30 years. Fiber bioconcrete, which incorporates
0.5-1.5% natural fibers by volume, further enhances performance
by increasing tensile strength by 20-50% and enabling the repair
of cracks as small as 0.1 mm. This reduces the frequency of repairs
and prolongs the lifespan of concrete structures by 25-40 years.
Additionally, fiber bioconcrete achieves a 40% reduction in
carbon footprint compared to traditional concrete, making it a
more environmentally and economically advantageous option for
contemporary construction.

Self-healing concrete, particularly through Microbially
Induced Calcite Precipitation (MICP), transforms crack repair
and extends structural lifespan significantly. Autogenous healing
addresses minor cracks up to 0.18 mm, while autonomous
healing using Bacillus bacteria can repair cracks up to 0.8 mm,
cutting repair costs by 40% and increasing durability by 20-30
years. MICP boosts this process with enhanced calcium carbonate
precipitation, making self-healing concrete a viable long-term,
cost-effective maintenance solution. Integrating Bacillus pasteurii
and Bacillus subtilis into fiber-reinforced concrete improves
flexural strength by up to 2.6 times and compressive strength
by up to 25.9%, thus enhancing durability and reducing repair
needs. Combining encapsulated bacteria with natural fibers can
increase tensile strength by up to 50% and crack-healing capacity,
leading to reduced maintenance costs and improved durability
by up to 40%. Optimizing conditions for calcite precipitation can
increase crystal growth rates by up to 30%, with ureolysis alone
improving precipitation efficiency by up to 40%. Managing factors
like temperature, pH, and bacterial concentration can boost MICP
efficiency by up to 40%, while optimized bacterial sourcing

may enhance calcite yields by up to 50%, improving concrete’s
sustainability and performance. Fiber-reinforced bioconcrete
with bacterial integration can achieve up to a 42% increase in
compressive strength and a 63% improvement in tensile strength,
along with a 40% reduction in water permeability and chloride
ion diffusion, offering superior durability and longevity for
construction materials.

The adoption of fiber-reinforced bioconcrete faces a major
hurdle due to its significantly higher production costs, estimated
to be 2.3 to 3.9 times greater than conventional concrete. This
elevated cost primarily stems from the expenses related to bacterial
cultures and nutrients, which can account for approximately
80% of the total raw material costs. Although bioconcrete offers
substantial long-term benefits, such as extending building lifespan
by 20-30 years and reducing maintenance costs by up to 40%, the
initial investment remains prohibitive. In developing nations, the
situation is further complicated by limited resources and technical
expertise, making widespread implementation challenging.
Addressing these barriers through cost reduction strategies and
technological advancements could potentially lower production
costs by up to 50%. Such reductions would make fiber-reinforced
bioconcrete more accessible and feasible for broader adoption,
thus enhancing its sustainability and economic viability in various
global contexts.
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