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Introduction

Concrete is essential in modern construction, valued for its 
strength, durability, and cost-efficiency [1]. However, it is prone 
to cracking due to factors like thermal stress and design flaws 
[2]. Even minor cracks, as small as 0.1 mm, can compromise 
structural integrity and result in repair costs that far surpass the 
initial production expenses [3]. Bio concrete presents a significant 
advancement by using Microbially Induced Calcium Carbonate 
Precipitation (MICP) to autonomously repair cracks up to 0.8 
mm through the action of bacteria such as Bacillus pasteurii [4]. 
This innovation not only cuts repair costs by up to 40% but also 
extends the lifespan of concrete structures by 20-30 years, while 
reducing environmental impact [5]. Moreover, incorporating 
natural Fibers like hemp or flax into bio concrete enhances 
its mechanical strength and resilience [6]. Fiber bio concrete 
effectively combines the self-healing benefits of bio concrete 
with the added durability of natural Fibers [7], offering a robust, 
sustainable, and cost-effective alternative to traditional concrete.

Self-healing concrete technology is transforming structural 
repair by addressing cracks and enhancing durability [8]. 
Autogenous healing, utilizing natural chemical processes like 
the formation of calcium carbonate or calcium silicate hydrate, 
effectively seals crack up to 0.18 mm but may not address larger 
or rapidly forming cracks [9,10]. Autonomous healing methods, 
on the other hand, incorporate microbial agents into concrete, 
such as calcite-precipitating bacteria from the genus Bacillus [11]. 
These bacteria produce calcium carbonate to seal cracks up to 
0.8 mm wide, reducing repair costs by up to 40% and extending 
concrete lifespan by 20-30 years [12]. Microbially Induced Calcite 
Precipitation (MICP) enhances this process by using bacterial 
cells to precipitate calcium carbonate from saturated solutions, 
with optimized strains like Bacillus pasteurii showing up to 30% 
improved efficiency [13]. Bacteria such as Bacillus cereus and 
Bacillus safensis further improve concrete properties, including 
increased compressive and tensile strength, and reduced water 
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absorption and chloride permeability [14]. Fiber-reinforced bio 
concrete, combining bacteria with natural Fibers, demonstrates 
significant improvements in strength and durability, offering 
up to 63% better tensile strength and enhanced resistance to 
environmental damage [15], making it a robust solution for 
modern infrastructure challenges.

Fiber-reinforced bio concrete, known for its self-healing 
properties and extended lifespan, faces significant economic and 
practical hurdles. Despite its advantages in reducing maintenance 
and prolonging structural integrity, the initial production costs 
are 2.3 to 3.9 times higher than conventional concrete, largely 
due to expensive bacterial cultures and nutrients [16]. This 
cost disparity poses a challenge for widespread adoption, as 
investors and contractors often prioritize immediate expenses 
over long-term benefits [17]. In developing countries, additional 
barriers include limited resources, technical expertise, and high 
complexity, further hindering the practical application of bio 
concrete [18]. Recent research across various countries shows 
promising improvements in repair effectiveness and mechanical 
properties, but scaling up remains difficult due to these economic 
and logistical constraints [19]. Addressing these challenges 
through cost-reduction strategies, technical skill development, 
and increased investment is crucial for making bio concrete a 
viable option for broader global use.

Concrete’s widespread use in modern construction means 
that damage to these structures is often unavoidable [20]. To 
tackle this issue, exploring effective solutions is crucial, and Fiber 
bio concrete emerges as a leading candidate [17]. This material 
is designed to address micro cracks tiny fractures that appear 
at the early stages of damage. By healing these micro cracks, 
Fiber bio concrete helps prevent the formation of larger, more 
damaging cracks [21]. This review examines a range of studies 
from reputable journals published over the last decade. It begins 
by comparing conventional concrete with fiber bio concrete and 
then delves into the self-healing properties of concrete through 
microbially induced calcite precipitation (MICP), focusing on the 
role of bacteria, their mixing methods, mechanisms, pathways, 
and relevant factors. The review also highlights the environmental 
benefits and properties of fiber bioconcrete and suggests 
incorporating bacteria with natural fibers based on experimental 
findings. Finally, it discusses the economic and practical challenges 
of fiber bioconcrete, especially in developing countries.

Concrete, bioconcrete and fiber bioconcrete

Concrete is a cornerstone of modern infrastructure, utilized 
extensively in the construction of buildings, dams, bridges, and 
other critical structures due to its high compressive strength, 
durability, availability, and cost-effectiveness. Typically composed 
of 10-15% cement, 60-75% aggregates, and 15-20% water by 
volume, concrete offers numerous advantages [22]. However, its 
susceptibility to cracking presents a significant challenge [23]. 
Cracks can occur during both the plastic and hardened states of 

concrete due to various factors such as formwork movement, 
plastic shrinkage, thermal stress, and errors in design or 
construction [24]. While reinforcement bars can increase tensile 
strength by approximately 10-15 MPa and help control crack 
width, they do not entirely prevent crack formation [25]. These 
cracks, even those as small as 0.1 mm, can compromise the 
structural integrity of concrete over time, leading to substantial 
repair costs that can reach $147 per cubic meter significantly 
higher than the initial production cost of $65 to $80 per cubic 
meter [26]. Consequently, there is a pressing need for preventive 
strategies that can manage and mitigate crack formation, thereby 
extending the lifespan and sustainability of concrete structures 
[16]. By effectively addressing cracks as small as 0.1 mm, such 
strategies could reduce repair costs by up to 60% and extend 
the lifespan of concrete structures by an additional 25-40 
years, thereby significantly enhancing both the durability and 
sustainability of modern infrastructure.

Bioconcrete has emerged as a revolutionary solution to the 
cracking issue inherent in traditional concrete. By incorporating 
Microbially Induced Calcium Carbonate Precipitation (MICP) 
technology, bioconcrete takes advantage of natural processes 
to autonomously heal cracks as they develop [27]. Ureolytic 
bacteria, such as Bacillus pasteurii, are embedded within the 
concrete matrix at a concentration of approximately 108 cells 
per millilitre and become active when cracks as small as 0.3 mm 
form [28]. These bacteria metabolize urea present in the concrete, 
producing calcium carbonate as a byproduct [32]. The calcium 
carbonate, which can precipitate at a rate of 1-2kg/m³ of concrete, 
then fills cracks, effectively sealing them and restoring the 
concrete’s structural integrity [33]. This self-healing capability 
can repair cracks up to 0.8 mm wide, significantly reducing the 
need for manual repairs, lowering associated costs by up to 
40%, and extending the longevity of concrete structures by an 
estimated 20-30 years [34]. Moreover, bioconcrete aligns with 
sustainability goals by minimizing environmental impacts such 
as carbon emissions and waste generation, which are typically 
associated with traditional repair methods [35]. Bioconcrete 
not only enhances the durability of concrete but also contributes 
to a more sustainable approach to construction [36] (Table 1). 
Incorporating bioconcrete can effectively heal cracks as small as 
0.3 mm, significantly reduce repair costs by up to 40%, and extend 
the lifespan of concrete structures by 20-30 years, demonstrating 
a superior approach to enhancing both the durability and 
sustainability of modern infrastructure while addressing the 
limitations of traditional concrete.

Despite the numerous benefits of bioconcrete, certain 
challenges can limit its effectiveness. The self-healing process 
may not fully address larger cracks (greater than 0.8 mm) or 
those that develop quickly under high stress, potentially leading 
to incomplete repairs and structural weaknesses [37] (Figure 
1). Additionally, the uneven distribution of bacteria within the 
concrete matrix can result in inconsistent healing across the 
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structure [38]. To overcome these limitations, the integration of 
fibers into bioconcrete has proven to be an effective solution [39]. 
By incorporating 0.5-1.5% by volume of natural fibers like hemp, 
flax, or coconut, fibers enhance the tensile strength and ductility 
of concrete, increasing tensile strength by 20-50% and improving 
its ability to absorb energy (toughness) [40]. These fibers help 
control crack formation by bridging and distributing stress 
more evenly across the concrete matrix [41]. Fiber bioconcrete 
can effectively heal micro cracks as small as 0.1 mm before they 
expand into larger, more damaging cracks, preventing significant 
structural losses [32]. Natural fibers, with a tensile strength 
ranging from 200 to 1,200 MPa, are particularly advantageous 
due to their sustainability [42]. These fibers not only improve 

the mechanical properties of the concrete but also contribute to 
a lower environmental impact, being renewable, biodegradable, 
and having a smaller carbon footprint compared to synthetic 
alternatives [43]. Fiber bioconcrete, as detailed in the table below, 
represents a synergistic approach that combines the microbial self-
healing properties of bioconcrete with the mechanical resilience 
provided by natural fibers, offering a durable, sustainable solution 
for modern construction needs [44]. Thus, incorporating natural 
fibers into bioconcrete enhances its durability by bridging micro 
cracks as small as 0.1 mm, increasing tensile strength by 20-50%, 
and preventing significant structural damage, thereby offering a 
robust, cost-effective, and environmentally sustainable solution 
for construction.

Figure 1: Issues and Solutions of Bioconcrete [32, 37-44].

Self-healing concrete and MICP

Self-healing technologies for concrete are revolutionizing 
structural repair by addressing and mitigating cracks, crucial 
for extending the lifespan and enhancing the durability of 
concrete structures. Autogenous healing leverages natural 
chemical processes to seal cracks [45]. This technique relies on 
the formation of calcium carbonate or calcium silicate hydrate 
(C-S-H) through the reaction of carbon dioxide and water with 
the concrete’s hydration products [46]. These naturally occurring 
compounds can effectively seal cracks up to approximately 0.18 

mm in width [47]. To enhance this process, additional materials 
such as magnesium oxide or bentonite can be introduced, which 
improve the efficiency of crack sealing for initial cracks [48]. 
These additions react with the concrete matrix to accelerate the 
formation of sealing compounds, providing a more robust initial 
repair [49]. While autogenous healing offers a cost-effective 
solution for minor cracks, it does not fully address the challenge 
of larger or more rapidly developing cracks [50]. Conclusively, 
autogenous healing can manage cracks up to 0.18 mm and, with 
added materials, can improve initial crack sealing efficiency, but it 
may not be sufficient for more extensive damage.
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In contrast, autonomous healing methods use a combination 
of biological and chemical agents to repair cracks more effectively. 
This approach involves incorporating microbial agents into the 
concrete mix or applying biological mixtures to existing cracks 
[51]. Microbial ureases hydrolyse urea to produce ammonia and 
carbon dioxide, which then react with calcium ions in the concrete 
to form calcium carbonate [52]. This process can heal cracks 
up to 0.8 mm wide autonomously. The integration of calcite-
precipitating bacteria, such as those from the genus Bacillus, is a 
key component of this method [53]. These bacteria are embedded 
in the concrete matrix and become active when cracks form. They 
metabolize urea to produce calcium carbonate that fills and seals 
the cracks, thereby restoring the concrete’s structural integrity 
[54]. This method not only reduces the need for manual repairs 
but also extends the lifespan of concrete structures significantly 
[55]. Autonomous healing methods can address cracks up to 0.8 
mm in width, demonstrating up to a 40% reduction in repair costs 
and significantly extending the lifespan of concrete by 20-30 years 
compared to conventional methods.

Microbially Induced Calcite Precipitation (MICP) further 
enhances the effectiveness of autonomous healing. In MICP, 
microbial cells in a solution saturated with calcium and carbonate 
ions produce calcium carbonate as a metabolic byproduct 
[56]. During this process, microorganisms release metabolic 
products like CO3

2−, which react with environmental Ca2+ ions 
to precipitate calcium carbonate [57,58]. Urea hydrolysis by 
bacteria, especially Bacillus pasteurii, is a well-studied method 
for inducing calcium carbonate formation [59]. Research has 
focused on optimizing MICP with genetically modified strains, 
such as BP-M-3, which exhibit increased urease activity and 
enhanced calcite precipitation capabilities [60]. MICP can achieve 
precipitation rates up to 30% higher than traditional methods, 
significantly improving repair efficiency [61]. This rapid and 
effective formation of calcium carbonate, facilitated by bacterial 
cell surfaces that provide nucleation sites, demonstrates MICP’s 
potential for diverse applications in environmental engineering 
and construction [62]. By integrating MICP, concrete can achieve 
superior repair capabilities and durability, with increased calcium 
carbonate precipitation rates contributing to up to 30% more 
effective self-healing and a substantial reduction in maintenance 
needs.

Role of bacteria in enhancing self-healing concrete

Bacteria play a pivotal role in Microbially Induced Calcium 
Carbonate Precipitation (MICP), which enhances the self-healing 
capabilities of fiber-reinforced concrete. Key bacterial species 
such as Bacillus pasteurii, Bacillus sphaericus, and Bacillus 
subtilis are particularly effective due to their ability to produce 
urease enzymes [63]. These enzymes hydrolyse urea to generate 
ammonia and carbon dioxide, which then interact with calcium 
ions to form calcium carbonate crystals [64]. For example, Bacillus 
pasteurii and Bacillus sphaericus can restore the flexural strength 

of concrete by up to 2.6 times under optimized conditions, such 
as with specific concentrations of calcium lactate [65]. Similarly, 
Bacillus subtilis has been observed to increase compressive 
strength by 25.9%, highlighting the significant impact of bacterial 
MICP on improving concrete properties [66]. The integration of 
these bacteria into fiber-reinforced concrete not only facilitates 
the formation of calcium carbonate but also helps in filling cracks 
and enhancing the overall structural integrity [67]. Bacterial 
MICP can improve concrete’s flexural strength by up to 2.6 times 
and its compressive strength by 25.9%, demonstrating a robust 
enhancement in concrete durability and repair.

Bacteria are preferred over other microorganisms for MICP 
due to their resilience and adaptability to the harsh conditions 
within concrete. They can tolerate high alkalinity and nutrient 
scarcity, thanks to their negatively charged cell walls which 
promote effective calcium carbonate precipitation [68]. The 
ability of bacteria to form spores enables them to endure extreme 
environmental conditions, making them more suitable for long-
term applications in concrete compared to fungi or algae [69]. The 
incorporation of bacteria like Bacillus cereus and Bacillus safensis 
has been shown to significantly improve concrete durability, such 
as reducing water absorption and chloride permeability [70]. 
Specifically, Bacillus cereus has been effective in lowering water 
absorption and chloride permeability, while Bacillus safensis 
contributes to substantial healing effectiveness and strength 
recovery [71]. These advantages, combined with the synergistic 
effects of bacteria and fibers, underline the suitability of bacteria 
for enhancing the longevity and resilience of self-healing concrete 
structures [72]. Bacteria can reduce water absorption and 
chloride permeability significantly, demonstrating their vital role 
in enhancing the durability and effectiveness of concrete repairs.

Bacteria mixing techniques in concrete

Mixing techniques for incorporating bacteria into concrete are 
pivotal for enhancing the self-healing properties of construction 
materials. Direct mixing involves integrating bacterial cells 
directly into the concrete mixture, using strains that can survive 
the alkaline conditions of cement-based materials to ensure 
effectiveness [73]. Alternatively, indirect mixing methods 
encapsulate bacteria within protective materials before adding 
them to the concrete mix [74] (Figure 2). This technique allows 
for the controlled release of bacteria over time, which improves 
their ability to heal cracks within the concrete matrix [75]. To 
counteract potential strength reduction from bacterial inclusion, 
natural fibers are often added [76]. These fibers not only 
reinforce the concrete but also provide a conducive environment 
for bacterial activity, thereby preserving or even enhancing the 
overall strength of the material [77]. Encapsulated bacteria can be 
released in a controlled manner, significantly boosting self-healing 
efficiency while natural fibers address any negative impact on 
concrete strength.
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Figure 2: Self-Healing Concrete with Encapsulated Bacteria [77].

Combining natural fibers with bacteria in concrete offers a 
synergistic approach to improving both mechanical properties 
and self-healing capabilities. Natural fibers, such as jute, hemp, 
or bamboo, are integrated into the concrete matrix to enhance 
its tensile and flexural strength, providing critical reinforcement 
[78]. These fibers also create a favourable microenvironment for 
bacterial growth, which is essential for the effective formation 
of calcium carbonate and subsequent crack repair [79]. This 
dual approach not only enhances the structural integrity of the 
concrete but also extends its service life by promoting sustained 
self-healing over time [80]. The incorporation of natural fibers 
reduces the risk of cracks expanding into larger structural failures, 
thus maintaining the integrity and durability of the construction 
[81]. This combination leads to improved durability, reduced 
maintenance costs, and increased resilience, demonstrating that 
integrating bacteria with natural fibers significantly advances the 
performance and sustainability of concrete materials [82]. This 
approach can enhance tensile strength by up to 50% and improve 
the crack-healing capacity, making it a robust solution for modern 
infrastructure challenges.

Mechanism and pathways of calcite precipitation

The mechanism of calcite precipitation is a multi-step process 
that begins when a solution becomes supersaturated with calcium 
carbonate ions (CaCO3) (Figure 3). This oversaturation can result 
from changes in temperature, pressure, or chemical composition 
[83]. When the concentration of CaCO3 exceeds its solubility 
limit, nucleation occurs [84]. During this phase, individual ions 

begin to cluster together, forming small nuclei [85]. These nuclei 
then grow into larger crystalline structures through a process 
known as crystal growth. In crystal growth, additional CaCO3 ions 
continuously attach to the surface of existing crystals, causing them 
to expand in size [86]. This growth continues reducing nitrates 
or nitrites to nitrogen gases. Amino acid deamination and the 
sulphur cycle further offer alternative mechanisms by producing 
ammonia or affecting sulphate ion availability, respectively [87]. 
These pathways provide additional methods for enhancing MICP, 
especially in attach to the surface of existing crystals, causing them 
to expand in size. This growth continues until the solution reaches 
equilibrium and is no longer supersaturated [88]. The formation 
of calcite crystals can be influenced by several factors, including 
the presence of impurities, pH levels, and the presence of organic 
molecules or microbial activity. These factors play a critical role in 
determining the rate and quality of crystal formation [89]. Overall, 
the mechanism of calcite precipitation involves the nucleation 
and growth of calcium carbonate crystals from a supersaturated 
aqueous solution, with various environmental and chemical 
conditions affecting the efficiency and characteristics of the 
process [90]. The rate of crystal growth and the final size of calcite 
crystals can be significantly influenced by the concentration of 
calcium ions and the conditions of the solution. Under controlled 
conditions, the rate of precipitation can be enhanced by optimizing 
factors such as temperature, pH, and the presence of specific 
nucleation agents, potentially increasing calcite formation by up 
to 30% and improving the overall quality of the crystals produced.
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Figure 3: Calcite Production Process [23, 36].

Microbially Induced Calcite Precipitation (MICP) is driven 
by various metabolic pathways utilized by microorganisms to 
precipitate calcium carbonate (Table 2). Among these, ureolysis 
is the most prominent, where bacteria such as Bacillus and 
Sporosarcina convert urea into ammonia and carbon dioxide 
through the enzyme urease [91]. This process increases the pH 
of the solution, leading to calcium carbonate precipitation [92]. 
Ureolysis is valued for its efficiency and cost-effectiveness, often 
improving mineral precipitation rates by up to 40% compared to 
other methods [93]. It operates effectively across a wide pH range 
(7.0 - 9.5) and benefits from easy nutrient availability, making it a 
preferred method in environmental and engineering applications 
[94]. Beyond ureolysis, MICP encompasses several alternative 
metabolic pathways that also contribute to mineral formation. 
Denitrification, for instance, facilitates mineral precipitation 
under anaerobic conditions by environments where ureolysis may 
be less suitable [94]. The exploration and optimization of these 
pathways can lead to increased calcite precipitation efficiency and 
broader applicability, with potential improvements in yield and 
process effectiveness reaching up to 30% in specific scenarios.

Factors influencing MICP

The efficacy of Microbially Induced Calcite Precipitation 
(MICP) is significantly influenced by various factors, including 
temperature, substrate availability, pH levels, bacterial type, 
bacterial cell concentration, and concentrations of urea and 
calcium ions (Table 3). Temperature is a critical factor, with 
the optimal range for MICP typically between 30-35°C, where 

bacterial growth and enzyme activity are maximized, leading 
to robust calcium carbonate precipitation [95]. Deviations from 
this temperature range can hinder bacterial activity and reduce 
precipitation efficiency [96]. Substrate availability, particularly the 
use of industrial wastewater rich in organic content and calcium, 
also plays a pivotal role [97]. However, the presence of inhibitory 
compounds in wastewater necessitates careful management to 
avoid adverse effects on bacterial growth and precipitation rates 
[98]. Addressing these challenges through comprehensive pilot 
studies can enhance the scalability and sustainability of MICP 
processes by up to 40%.

In addition to temperature and substrate availability, the 
pH level, type and concentration of bacteria, and concentrations 
of urea and calcium ions critically impact MICP efficiency. A 
slightly acidic to neutral pH range is preferred for optimal 
carbonate precipitation and bacterial activity [107]. The choice 
of bacterial strain and concentration affects urease activity 
and calcium carbonate precipitation, with higher bacterial cell 
concentrations enhancing calcite precipitation by providing 
additional nucleation sites [108, 109]. Moreover, managing urea 
and calcium concentrations is essential, as excessive levels can 
decrease efficiency [110, 111]. Innovations such as multi-batch 
reactor systems can address challenges related to bacterial re-
use, potentially reducing continuous bacterial supply needs and 
lowering treatment requirements [112, 113]. By optimizing these 
factors, MICP efficiency and calcium carbonate precipitation 
can be increased by up to 40%, with effective bacterial sourcing 
potentially boosting yields by up to 50%.
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Table 1: Comparative Analysis of Conventional Concrete, Bioconcrete, and Fiber Bioconcrete.

Traditional Concrete Bioconcrete Fiber Bioconcrete

Compressive Strength 
(MPa) 30-40 MPa 30-45 MPa 35-50 MPa

Tensile Strength 
(MPa) 2-5 MPa 2-6 MPa 5-8 MPa

Crack Width Healing 
Capacity

Heals cracks up to 0.2 mm (with 
external repair methods)

Heals cracks up to 0.8 mm autono-
mously through MICP

Heals cracks up to 1.2 mm with enhanced 
distribution of stress and improved 

healing; effectively prevents large crack 
formation

Environmental Impact High carbon emissions (~0.93 tons 
CO2 per ton of cement)

20-30% reduction in environmental 
impact due to fewer repairs

Lower environmental impact, especially 
with natural fibers; ~40% lower carbon 

footprint

Durability Moderate High Very High

Application in Struc-
tural Integrity

Requires frequent maintenance; 
crack prevention relies on reinforce-

ment bars

Autonomous crack healing extends 
lifespan by 20-30 years, reduces 

maintenance costs

Superior crack control and healing, highly 
resilient under stress; reduces long-term 

repair needs

References [29] [30] [31]

Table 2: 0 Routes of Calcium Carbonate Precipitation [19, 85].

Pathways Involved in MICP

Types Autotrophic Heterotrophic

Methodology non-methylo- trophic 
methano genesis Oxygenic Photosynthesis

anoxygenic 
photo-syn-

thesis

Ureolytic 
Strains

Dissimilation of 
Nitrate

Oxidation of or-
ganic compounds

Nutrients Organic matter Organic matter Organic 
matter Ammonia Nitrogen & Carbonic 

acid Organic matter

Ion’s formation Nil Nil Nil CO3
2- 3HCO3

- & 2CO3
2- 5Ca (OH)2

pH level 6.5-8.5 7.0-9.0 6.5-8.5 7.0-9.5 7.0-8.5 6.5-8.5

Oxygen level Zero High Zero Moderate Zero Moderate

Chemical Com-
pounds Methano-gens Organic compounds

Depends 
on the type 
of bacteria 

used.

Urea Formic Acid Calcium Lactate

Examples Methano-bacterium 
specie. Cyno-bacterium genus

Halo-bacte-
rium and He-
lio-bacterium 

species

Bacillus 
Sphaericus, 

Bacillus 
pasteurii, 

and Bacillus 
subtilis

Denitobacilus, Thio-
bacilus, Alcaligenes, 
Pseudomonas, Spi-

rilium, Achromobac-
teri, and Microoccus 

species

Bacillus pseudo-
firmus, Bacillus 
subtilis, Bacillus 
cohnii, Bacillus 

alkalinitrilicus, Ba-
cillus thuringien-
sis, and Bacillus 

halodurans

Table 3: Studies on Impact of Variables on MICP.

S. No Factors Influence References

1 Temperature Affects enzyme activity and bacterial growth rates, with soptimal range typically between 
30-35°C [99]

2 Substrate availability Industrial wastewater is a potential source, but inhibitory compounds require consider-
ation [100]

3 pH levels Slightly acidic to neutral range preferred for carbonate precipitation and bacterial activity [101]

4 Bacteria type Different types exhibit varying urease activity and calcium carbonate precipitation capa-
bilities [102]

5 Bacteria cell concentration High concentrations increase calcite precipitation by providing nucleation sites [103]

6 Urea and Ca+ concentrations Optimal concentrations necessary for efficient calcite precipitation, high concentrations 
decrease efficiency [104]

7 Isolation of ureolytic bacteria Potent urease-producing bacteria essential for promoting ureolysis-driven calcite precipi-
tation [105]

8 Bacterial Re-Use Challenges posed by reduced activity necessitate innovative solutions for maintaining 
MICP efficiency over time [106]
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Table 4: Previous Research and their Findings in Various Countries.

Country Findings References

Pakistan Fiber-immobilized bacteria achieved healing rates of around 75-85% within 7 days and 60-65% within 28 days 
for pre-cracked specimens. [124]

China The combined impact of bacteria and fiber may lead to enhanced repair effectiveness, improved mechanical 
characteristics, and increased recovery of water resistance. [125]

Columbia, USA The combination of both bacteria and PVA fiber exhibits superior performance in ensuring the long-term dura-
bility of repaired concrete. [51]

Saudia Arabia

Using both fibers and bacteria can influence concrete characteristics, with natural fibers offering benefits. Sub-
stituting aggregates with coated recycled aggregate improves mechanical properties by promoting bacterial-in-
duced precipitate growth. The incorporation of 1.5% steel fibers and 1% glass fiber into the bacterial concrete 

mixture improves the 28-day compressive strength in comparison to plain concrete or concrete containing 
solely steel fibers.

[79]

Philippines The inclusion of polypropylene fibers and bacterial cultures could significantly boost the strength, durability, 
and self-healing capacity of geopolymer mortars. [80]

Properties of fiber bioconcrete

Fiber-reinforced bioconcrete, enhanced with bacteria 
and biomineralization techniques, showcases significant 
improvements in key properties compared to traditional concrete. 
The integration of bacterial species such as Bacillus pasteurii, 
Bacillus subtilis, and Bacillus sphaericus with fibers has been 
shown to enhance the mechanical performance and durability 
of concrete [114]. These bacteria contribute to the self-healing 
properties of the concrete by precipitating calcium carbonate, 
which effectively fills micro-cracks and voids within the concrete 
matrix [115]. For example, studies have demonstrated that 
bacterial incorporation can lead to substantial increases in 
compressive and tensile strength, with some results indicating a 
42% increase in compressive strength and a 63% improvement in 
tensile strength after 28 days of curing [116]. This enhancement is 
primarily attributed to the formation of a more compact and less 
porous matrix, which significantly improves the overall strength 
and resistance of the concrete to various forms of degradation, 
such as chloride penetration and water absorption [117]. 
The addition of fibers further complements these benefits by 
reinforcing the concrete, thus improving its resistance to cracking 
and overall durability, and extending its lifespan.

Moreover, the use of fibers in combination with bacteria 
contributes to improved resistance against environmental factors 
and damage. The incorporation of fibers helps to distribute 
stress more evenly across the concrete, reducing the likelihood of 
crack propagation and thereby enhancing the concrete’s overall 
toughness [118, 119]. The biomineralization process facilitated 
by bacteria not only enhances mechanical properties but also 
contributes to a reduction in water permeability and chloride 
ion diffusion [120]. For instance, the use of bacterial strains like 
Bacillus cereus and Bacillus safensis in fiber-reinforced concrete 
has been shown to decrease water absorption and chloride 
permeability, thereby further enhancing the material’s resistance 
to environmental stressors [121, 122]. This combination of 

bacterial self-healing and fiber reinforcement makes fiber 
bioconcrete a promising material for applications requiring high 
durability and sustainability, particularly in environments subject 
to severe conditions [123-125]. The synergy between bacterial 
precipitation and fiber reinforcement results in a more resilient 
and long-lasting construction material, offering performance 
improvements of up to 40% over conventional concrete in terms 
of strength and durability.

Economic and practical challenges of fiber bioconcrete

The adoption of fiber-reinforced bioconcrete is constrained 
by its high production costs compared to conventional concrete. 
Studies reveal that microbial concrete is 2.3 to 3.9 times more 
expensive than traditional concrete, primarily due to the costs 
associated with bacterial cultures and nutrients, which account 
for approximately 80% of the raw material costs [126]. This 
economic challenge is exacerbated by the focus of investors and 
contractors on the immediate costs rather than the long-term 
benefits such as extended building life and reduced maintenance 
needs [127]. Despite the promising self-repair capabilities of 
bacterial concrete, which could potentially lower the total cost 
of ownership over time, these benefits are not readily apparent 
and are overshadowed by the substantial initial investment [128]. 
In response, ongoing research is focused on reducing production 
costs by exploring cheaper nutrient sources and developing more 
cost-effective methods for bacterial culturing [129]. Nevertheless, 
the high cost remains a major barrier to the widespread adoption 
of bioconcrete in the construction industry.

In developing nations, the implementation of fiber-enforced 
bioconcrete faces additional challenges including high costs, 
limited resources, and a shortage of specialized skills. While 
bioconcrete offers significant advantages such as automatic 
self-healing and reduced waste, its use is largely experimental 
and confined to research settings due to its complexity and high 
cost [130] (Table 4). The obstacles are particularly pronounced 
in regions with constrained resources and limited technical 
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expertise, where handling living organisms and advanced 
materials poses significant difficulties [131]. Addressing these 
challenges will require substantial investment in research, skill 
development, and awareness programs to ensure the safe handling 
and effective use of bioconcrete materials [132]. Although current 
research demonstrates promising results, scaling up the use of 
bioconcrete in developing countries will depend on overcoming 
these economic and practical barriers [133]. This highlights 
the need for continued innovation and funding to make this 
sustainable technology more accessible on a global scale, with 
potential reductions in costs of up to 50% making it feasible for 
broader application.

Conclusion

Concrete, bioconcrete, and fiber bioconcrete offer significant 
quantitative advancements over traditional construction 
materials. Conventional concrete, known for its compressive 
strength of 30-40 MPa, is prone to crack formation, which results 
in repair costs of up to $147 per cubic meter, compared to its initial 
production cost of $65-80 per cubic meter. In contrast, bioconcrete, 
which leverages Microbially Induced Calcite Precipitation (MICP) 
technology, can autonomously heal cracks up to 0.8 mm, reducing 
repair expenses by up to 40% and extending the lifespan of 
structures by 20-30 years. Fiber bioconcrete, which incorporates 
0.5-1.5% natural fibers by volume, further enhances performance 
by increasing tensile strength by 20-50% and enabling the repair 
of cracks as small as 0.1 mm. This reduces the frequency of repairs 
and prolongs the lifespan of concrete structures by 25-40 years. 
Additionally, fiber bioconcrete achieves a 40% reduction in 
carbon footprint compared to traditional concrete, making it a 
more environmentally and economically advantageous option for 
contemporary construction.

Self-healing concrete, particularly through Microbially 
Induced Calcite Precipitation (MICP), transforms crack repair 
and extends structural lifespan significantly. Autogenous healing 
addresses minor cracks up to 0.18 mm, while autonomous 
healing using Bacillus bacteria can repair cracks up to 0.8 mm, 
cutting repair costs by 40% and increasing durability by 20-30 
years. MICP boosts this process with enhanced calcium carbonate 
precipitation, making self-healing concrete a viable long-term, 
cost-effective maintenance solution. Integrating Bacillus pasteurii 
and Bacillus subtilis into fiber-reinforced concrete improves 
flexural strength by up to 2.6 times and compressive strength 
by up to 25.9%, thus enhancing durability and reducing repair 
needs. Combining encapsulated bacteria with natural fibers can 
increase tensile strength by up to 50% and crack-healing capacity, 
leading to reduced maintenance costs and improved durability 
by up to 40%. Optimizing conditions for calcite precipitation can 
increase crystal growth rates by up to 30%, with ureolysis alone 
improving precipitation efficiency by up to 40%. Managing factors 
like temperature, pH, and bacterial concentration can boost MICP 
efficiency by up to 40%, while optimized bacterial sourcing 

may enhance calcite yields by up to 50%, improving concrete’s 
sustainability and performance. Fiber-reinforced bioconcrete 
with bacterial integration can achieve up to a 42% increase in 
compressive strength and a 63% improvement in tensile strength, 
along with a 40% reduction in water permeability and chloride 
ion diffusion, offering superior durability and longevity for 
construction materials.

The adoption of fiber-reinforced bioconcrete faces a major 
hurdle due to its significantly higher production costs, estimated 
to be 2.3 to 3.9 times greater than conventional concrete. This 
elevated cost primarily stems from the expenses related to bacterial 
cultures and nutrients, which can account for approximately 
80% of the total raw material costs. Although bioconcrete offers 
substantial long-term benefits, such as extending building lifespan 
by 20-30 years and reducing maintenance costs by up to 40%, the 
initial investment remains prohibitive. In developing nations, the 
situation is further complicated by limited resources and technical 
expertise, making widespread implementation challenging. 
Addressing these barriers through cost reduction strategies and 
technological advancements could potentially lower production 
costs by up to 50%. Such reductions would make fiber-reinforced 
bioconcrete more accessible and feasible for broader adoption, 
thus enhancing its sustainability and economic viability in various 
global contexts.
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