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Introduction
Food fortification and supplementation with folic acid

Folates requirements for adults and pregnant women are 
400 and 600μg/day, respectively [1]. Folates deficiency during 
pregnancy has been related to a variety of serious adverse 
health effects such as preeclampsia, spontaneous abortion, 
still‐life, low birth weight, prematurity [2,3] and neural tube 
malformations including spina bifida and anencephaly [4]. Due to 
the increased prevalence of neural tube defects (NTD) and other 
fetal malformations associated to folate deficiency [5], several 
countries including the USA, Canada, Australia and in most of Latin 
America, impelled mandatory public policies of food fortification 
with FA; however, other countries, mainly those of the European 
Community, chose FA supplementation instead of food fortification 
during gestation [6]. For example, since 2000 the Latin American 
country Chile implemented a mandatory public policy to fortify 
wheat flour with an equivalent concentration of 1.8 ‐ 2.6 mg 
of FA per 1000 g of product, as recommended by the Food and  
Drug Administration (FDA) [7]. According to a study performed  

 
a year after such policy implementation, food fortification had a 
profound positive impact by reducing in 43% the prevalence of 
NTD at birth (from 17.1 to 9.7 per 1000 live births) [8].

The strategy of FA supplementation implies that women have 
to plan their pregnancies and consume oral FA supplements of 
400ug/day starting 4 weeks before conception until week 12 of 
gestation [9]. In the case of Chile, current legislation encourage 
initiation of FA supplementation with 1000 ug/day during the 
preconceptional period [10] despite a considerable consumption 
of FA already present in fortified foods. In fact, a recent study 
conducted in our laboratory showed that in a cohort of more than 
1000 women who are pregnant or have delivered a baby in the last 
few days, about 78% of them consumed FA supplements during 
pregnancy.

In a previous study, folate concentrations in women at 
reproductive age were considerably increased after initiation 
of food fortification with FA [11]. Due to appropriate policy 
implementation, FA fortified foods are now consumed by the 
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diets, and highlight the need for a re‐evaluation of FA supplementation in countries with high consumption of fortified foods.

Keywords: Folates; Pregnancy; Vitamin B12; Food fortification; Supplementation; Folic acid 

http://dx.doi.org/10.19080/AJPN.2017.06.555698
http://dx.doi.org/10.19080/AJPN.2017.04.555705
http://juniperpublishers.com/ajpn
http://juniperpublishers.com/ajpn/
http://juniperpublishers.com/ajpn/
http://juniperpublishers.com


How to cite this article: Raúl P, Erika C, Ana M R. Folates during Pregnancy: Food Fortification versus Supplementation with Folic Acid. Acad J Ped 
Neonatol. 2017; 4(5): 555705. DOI: 10.19080/AJPN.2017.04.555705.0077

Academic Journal of Pediatrics & Neonatology

whole population and as a consequence, an increase of blood folate 
concentration in the general adult population was measured. In 
about 12% of them, FA levels were found to be higher than the 
reference values reported as normal [12], and the levels of FA in 
the erythrocytes of women who consumed more than 400μg/day 
were found to increase significantly between the pre‐ and post‐
fortification period (from 689±170 to 732±159nmol/L) [11]. As 
could be the case for most developing countries, the high levels 
of fortified bread consumption by Chileans make folate deficiency 
highly unlikely. Interestingly, however, it was observed that 
high levels of folate coexist with low levels or even deficiency of 
vitamin B12 in women at reproductive age. In that report about 
10% of reproductive‐age women registered serum vitamin B12 
levels lower than 149pmol/L and 13% of them, below 185pmol/L 
(the vitamin B12 deficiency and marginal status for this vitamin 
is defined in adults as <148 and between 148‐221pmol/L 
respectively) [11].

Folates and vitamin B12 and their effects during 
pregnancy

When plasmatic levels of folates are high and vitamin B12 
levels are low in the long‐term, the health risks to both mother 
and offspring may increase. From the mechanistic point of view, 
some evidence suggest that the availability of methyl donors 
(e.g., folates, vitamin B12, betain and choline) is critical for 
the expression of several genes involved in fetal growth and 
development, all of which may affect the health of progeny in the 
long‐term [13]. Epigenetic mechanisms, like DNA or gene‐specific 
methylation, are probably the most altered reactions observed by 
an imbalance of the folate/vitamin B12 ratio. Gene methylation 
occurs in specific CpG sequences mainly located at the gene 
promoter region or in DNA pair bases related to the regulation 
of gene expression. For example, an hypermethylated Thau gene 
is less transcribed; an hypomethylated one is more expressed 
[14]. Along these lines, there is evidence that the methylation in a 
specific regulatory zone of the IGF2 gene was altered in pregnant 
women supplemented with 400 ug FA/day. This treatment 
affected fetal intrauterine growth, and consequentially birth 
weight [15]. In a very recent report, Joubert et al. [16] performed 
DNA methylation analysis in 2000 neonates, and observed a 
positive association between maternal folate concentrations and 
methylation of CpG sites in 320 genes, some of which related to 
birth defects, neurological function and embrionary development. 
More recently, a survey study evaluated the consumption of foods 
containing methyl donors, and found that the intake of dietary 
methyl donors was associated with hypermethylation of the leptin 
gene (LEP), a hormone inhibiting food intake [17]. In addition, FA 
supplementation for more than 6 months previous to conception 
was associated with higher levels of methylation of the retinoid 
receptor (RXRA), which is involved in the sensibility to insulin, 
adipogenesis and fat metabolism [17]. RXRA hypermethylation 
has been related to an increase of the adipose tissue in offspring 
at 9 years old [18]. Concerning to the effects at metabolic and/

or anthropometric levels, it has been observed in experimental 
animals,that maternal diets with FA and low vitamin B12 
concentrations lead to offsprings with increased weight and fat 
gain, glucose intolerance, hyperinsulinemia, reduced adiponectin 
in females, increased leptin in males and alterations in the lipid 
profile [19,20].

Epidemiological studies have reported that maternal 
alteration on these vitamin levels lead to a higher risk of metabolic 
alterations in their offspring such as lower HDL cholesterol levels 
[21], insulin resistance and higher adiposity [22], and HOMA‐IR 
at 6, 9.5 and 13 years of age [23,24]. On the other hand, we have 
observed that in preterm neonates (32‐36 weeks) serum folate 
concentrations were higher and those of vitamin B12 lower than 
the levels measured in term neonates (37‐41 weeks) [25]. Similar 
findings were observed in term neonates with a small birth weight 
compared to neonates with adequate birth weight [26]. Altogether, 
these results suggest that the interaction between folates and 
vitamin B12, likely by the methyl cycle, as well as an imbalance 
between them are related to gestational age and birth weight.

Discussion
We think that excessive FA intake, a situation that is easily 

reached when high consumption of FA fortified foods (mainly 
bread) is accompanied with FA supplementation, is not safe. For 
this reason, in countries with elevated consumption of fortified 
foods like Chile, additional FA supplementation should be carefully 
evaluated. A viable and effective alternative to food fortification 
is the strategy employed in European countries, where the 
standard recommendation is FA supplementation starting 4 
weeks before conception until the end of the first trimester 
instead of FA fortification of some types of food. Along this line, 
a recent study reported that this strategy led to a reduction of 
46% in the prevalence of NTDs between 2006 and 2013 [27]. Such 
reduction is comparable to that observed in Chile after a year of 
wheat flour fortification with FA. Finally, food fortification with 
FA affects the whole population and not only a specific segment 
of it, and could lead to unknown long‐term consequences. A 
potential consequence relates to increased risk of methylation of 
tumor suppressor genes, observation recently made by our group 
(unpublished results).

Conclusion
Maternal diets with an imbalance between FA (high) and 

vitamin B12 (low) may induce adverse health effects not only on 
mothers and the developing fetus, but possibly, in the long time, 
increasing the risk of pathologies in the offspring. This hypothesis 
has not yet been demonstrated and requires long‐ term follow‐up 
studies with animals and newborns.
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