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Introduction

The auditory system is very sensitive to hypoxia and 
hypoxemia which disturb the metabolism of neurons, depresses 
the electrophysiological function of synapses, and interferes 
with nerve conduction [1-4]. Experiments in animal models have 
shown that chronic sublethal hypoxia (CSH) adversely affects the 
immature cerebral cortex [4-9]. It is possible that the immature 
central auditory system is also affected by CSH. In newborn 
babies, hypoxia is particularly prevalent among those who are 
born very prematurely [10,11]. With the increase in survival rate 
for critically ill premature babies, there is an increased concern  

 
of brain damage and neurodevelopmental disorders, including 
auditory problems, in the survivors. 

Considerable evidence suggests that neurodevelopmental 
disorders in babies born very prematurely often link to hypoxic 
events during the perinatal period. These babies often undergo 
chronic or prolonged periods of sublethal hypoxia [12]. In babies 
born very prematurely, a typical clinical problem that is associated 
with CSH is chronic lung disease (CLD). It is a major lung disease 
that causes hypoxaemia of pulmonary origin in babies who are 
born very prematurely [13-17]. Babies who suffer CLD often 
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experience frequent episodes of hypoxaemia or prolonged 
hypoxaemia, which plays an important role in the development of 
brain damage and neurological impairment in premature babies 
with CLD. 

A previous study using the brainstem auditory evoked 
responses (BAERs) compared brainstem auditory function 
between premature babies with neonatal CLD and normal term 
babies [18]. These babies were found to have major abnormalities 
in the BAER components that mainly reflect functional status 
of the central auditory system, suggesting poor myelination 
and synaptic dysfunction in the central, specifically brainstem, 
auditory pathway. The abnormality may well be related to or 
due to CSH that occurs during the process of CLD. However, since 
these babies were born very prematurely, one cannot exclude a 
possible effect of premature birth on the auditory system which 
contributes the abnormality found in these babies. To minimize 
such a possible confounding effect, we compared the BAER in 
premature babies who had neonatal CLD with those who did not 
have CLD. Any differences between them are likely to reflect the 
adverse effect of CSH on the immature auditory system in babies 
born prematurely.

Subjects and Methods

 Subjects

The study (CLD) group was comprised of 42 CLD premature 
babies who required supplementary oxygen or ventilatory support 
beyond 36 weeks of postconceptional age to maintain PaO2 > 50 
mmHg. All babies had clinical signs of chronic lung respiratory 
disease and radiographic evidence of CLD (persistent strands 
of density in both lungs), which still existed when they were 
recruited for this study. These inclusive criteria were the same as 
previously reported [18]. The gestational age ranged between 25 
and 32 weeks (28.8 ± 1.9 weeks) and birthweight ranged between 
585 and 1980 g (1,093 ± 297 g). The control (non-CLD) group is 
comprised of 42 premature babies who did not have any evidence 
of neonatal CLD. Their gestational age ranged between 25 and 32 
weeks (29.2 ± 1.9 weeks) and birthweight ranged between 598 
and 2025 g (1,256 ± 368 g). 

These babies were recruited from the Children’s Hospital 
of Fudan University. Any babies who had other major perinatal 
complications were excluded to minimize any confounding effects 
on the BAER [3,19]. Parental consent was obtained for each baby 
before study entry. All babies were tested with BAER at 39-40 
weeks of postconceptional age; 39.6 ± 0.4 weeks in the study 
group, and 39.7 ± 0.4 weeks in the control group, which was 
almost the same.

Protocols of recording BAER

The protocols are the same as previously described [3,18-
20]. The recording was conducted using a Spirit 2000 Evoked 
Potential System (Nicolet Biomedical Inc. Madison, WI, USA) was 
used to record and analyse the BAER. The babies lay supine in a 

cot in a quiet room. Before BAER recording the auditory meatus 
was inspected and cleaned of any vernix or wax. The recording 
commence shortly after the baby fell asleep naturally, often after a 
feed, without using any sedatives. 

Three gold-plated disk electrodes were placed at the middle 
forehead (positive), the ipsilateral earlobe (negative) and the 
contralateral earlobe (ground), respectively. Inter-electrode 
impedances were maintained at <5 kΩ. The acoustic stimuli were 
rarefaction clicks, which were generated by rectangular pulses 
100 µsec in duration and delivered monaurally to the left ear 
through a TDH 39 earphone. Duplicate recordings were made in 
response to each stimulus condition to examine reproducibility. 
The clicks were presented at the order of 21, 51 and 91/s in the 
first run and in reverse order in the second run. The intensity level 
of the clicks was 60 dB nHL for all babies. These study procedures 
were approved by the Central Oxford Research Ethics Committee.

Sweep duration was 12 ms. The evoked brain responses to 
2,048 clicks were amplified, bandpass filtered between 100 and 
3000 Hz, and inputted to the averager. If the data exceeded 91% 
of the sensitivity parameter setting (51 µV), that sweep (artefact) 
was automatically rejected by the system. During the averaging, 
both the ongoing filtered EEG and the running averaged BAER 
were monitored. Sampling was discontinued whenever there 
were excessive muscle artefacts on the monitoring oscilloscope. 

Analysis of data

As previous described [3], measurement of thee latency of 
each BAER wave (I, III and V) was made the onset of click stimuli 
to the peak of each wave. Interpeak interval (I-V, I-III and III-V) 
was calculated as the time between any two wave peaks. Wave I 
amplitude was measured from the peak of wave I to the lowest 
trough between waves I and III, and wave III amplitude was 
from the trough to the peak of wave III. Measurement of wave V 
amplitude was made from the peak of wave V to the following 
trough. The amplitude ratio of waves V and I and III (i.e. V/I and 
V/III amplitude ratios) were also calculated. 

The measurements of the above BAER variables from two 
replicated BAER recordings to each stimulus condition were 
averaged for further analyses. Mean and standard deviation of 
each BAER variable at each stimulus condition were compared 
between groups using the Student t test were used. A 2-tailed 
value of p <0.05 was considered statistically significant. The 
statistical analysis was performed using SPSS package version 22. 

Results

The threshold of BAER was determined by establishing 
the lowest intensity of the clicks which produced visible and 
reproducible wave V with an amplitude between 0.04 and 0.10µV. 
No significant difference was found in BAER threshold between 
the study and control groups, although the threshold was lower 
in the study group (12.4±9 dB nHL) than in the control group 
(14.1±8 dB nHL). 
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Figures 1-3 show boxplot of the latencies for waves I, III and V, 
respectively, at 21-91/s clicks in CLD and non-CLD groups. Figure 
4 show boxplot of the I-V interpeak interval in CLD and non-CLD 
groups and the results of statistical comparison between the two 
groups. Figures 5-7 show boxplot of the amplitudes for waves I, III 
and V, respectively, in CLD and non-CLD groups. Figures 8 and 9 
show boxplot of the V/I and V/III amplitude ratios, respectively, in 
CLD and non-CLD groups and the results of statistical comparison 
in the V/I ratio between the two groups. 

There were small differences in the latencies of BAER wave V 
components at various click rates between the study and control 
group. At 21/s click rate, the latencies of BAER waves I and III in 

the study group tended to be shorter than in the control group 
(Figures 1 and 2). These differences between the two groups did 
not reach statistical significance. Wave V latency was slightly longer 
in the study group (Figure 3). However, the I-V interpeak interval in 
the study group is significantly longer than in the control group (p 
<0.01) (Figure 4). There were small differences in the amplitudes 
of waves I, III and V between the study and control groups (Figures 
5-7). None of the wave amplitudes differed significantly. The V/I 
amplitude ratio in the study group was significantly smaller than 
in the control group (Figure 8). No significant difference was found 
in the V/III amplitude ratio between the two groups, although it 
was slightly smaller in the study group (Figure 9).

Figure 1: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of wave I latency 
at 21-91/s clicks in CLD and non-CLD groups.

Figure 2: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of wave III latency 
at 21-91/s clicks in CLD and non-CLD groups.
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Figure 3: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of wave V 
latency at 21-91/s clicks in CLD and non-CLD groups.

Figure 4: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of wave I-V 
interpeak interval at 21-91/s clicks in CLD and non-CLD groups. **p <0.01 for comparison between CLD and non-CLD groups.

Figure 5: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of wave I 
amplitude at 21-91/s clicks in CLD and non-CLD groups.
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Figure 6: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of wave III 
amplitude at 21-91/s clicks in CLD and non-CLD groups. 

Figure 7: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of wave V 
amplitude at 21-91/s clicks in CLD and non-CLD groups.

Figure 8: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of V/I amplitude 
ratio at 21-91/s clicks in CLD and non-CLD groups. *p <0.05, **p <0.01 for comparison between CLD and non-CLD groups.
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Figure 9: Boxplot (bold line across the box, median; box, 25th and 75th centile; extensions, the largest and smallest values) of V/III 
amplitude ratio at 21-91/s clicks in CLD and non-CLD groups.

As the click rate was increased, all BAER wave latencies and the 
I-V interpeak interval were increased whereas wave amplitudes 
were decreased (Figures 1-9). At higher click rate of 51/s and 
91/s, the latencies of BAER waves I, III and V were all generally 
similar in the study and control group, with only small differences 
(Figures 1 and 2). The I-V interpeak interval in the study group is 
significantly longer than in the control group at both 51/s and 91/s 
(p <0.01 and 0.01) (Figure 4). The amplitudes of waves I, III and 
V showed small differences between the two groups, without any 
statistical significance at either 51/s or 91/s (Figures 5-7). The 
V/I amplitude ratio in the study group was similar to that in the 
control group at 51/s clicks but was significantly greater than in 
the control group (p <0.01) (Figure 8). The V/III amplitude ratio 
was similar in the two groups at both 51/sand 91/s (Figure 9).

Discussion

In human subjects, the BAER has been used as an important 
tool to examine functional integrity and development of the 
brainstem auditory pathway in babies after perinatal hypoxia or 
hypoxia-ischaemia [2,4,19-26]. In experimental animal models, 
the BAER has been shown that to be is very sensitive to arterial 
blood oxygen levels and acute hypoxia or hypoxia-ischaemia 
[4,27-30]. Therefore, in both human and animal experiments the 
BAER has been demonstrated as an important tool to research into 
the influence of hypoxia or hypoxia-ischaemia on the developing 
auditory system, including the neural pathway and the cochlea. 
More recently, the BAER has also been shown to be a valuable 
method to investigate the effect of prolonged or chronic hypoxaemia 
on the auditory system to shed light on the influence of CSH on the 
auditory system [3,4,18].

Hypoxaemia has a direct effect on the cochlea and an indirect 
effect by way of cardiovascular collapse and cerebral ischaemia 
[30]. Persistent, particularly permanent, hearing impairment is 

primarily caused by prolonged periods of hypoxic-ischaemic insult 
secondary to the hypoxia, instead of primary or direct hypoxic 
injury, and the complicated factors associated with hypoxia. 
Animal experiments revealed that BAER abnormalities following 
hypoxia are mainly due to ischaemia even when the initial insult 
is hypoxic alone [30]. In the present BAER study, we found some 
differences between the premature babies with neonatal CLD and 
those without CLD. The BAER threshold in the CLD babies was 
relatively lower than in the non-CLD babies. The latencies of BAER 
waves I and III, which is significantly affected by hearing threshold, 
in the CLD babies were slightly shorter than in the non-CLD babies. 
This is apparently related to the relatively lower BAER threshold in 
the CLD babies. 

The BAER threshold and the latencies of waves I and III 
predominately reflect peripheral auditory function. Our findings 
in these BAER variables suggest no major difference exists in 
peripheral auditory function between the CLD and non-CLD babies 
at 40 weeks of postconceptional age. Thus, CSH associated with 
neonatal CLD is unlikely to exert any significantly additional adverse 
effect on peripheral auditory function at term age. This is different 
from acute severe hypoxia that often affects peripheral auditory 
function, including cochlea and auditory nerve [3,19,31-34]. During 
the neonatal period, one-third of babies who suffer perinatal 
hypoxia-ischemia have peripheral auditory abnormality [35]. 
Peripheral auditory abnormality is not uncommon in babies born 
vary prematurely [34,36]. The BAER threshold in our premature 
CLD and non-CLD babies tended to be higher than in normal term 
babies whose BAER threshold is usually at 10 dB nHL or lower. This 
higher threshold suggests minor to moderate peripheral auditory 
abnormality in our premature babies.

A major finding in the present study is that the I-V interval in 
the CLD babies was significantly longer than in the non-CLD infants 
at all click rates. This interval, the most widely used BAER variable, 
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reflect neural conduction time along the auditory pathway in the 
brainstem. The relative increase in the I-V interval in our CLD 
babies, when compared with the non-CLD babies, suggests that 
and CSH associated with neonatal CLD significantly affects the 
central auditory pathway in premature babies. This increase is less 
significant than what was found when comparing the I-V interval 
between premature CLD babies and normal term babies [18,37]. 
Clearly, premature birth and associated perinatal conditions result 
in longer I-V interval, whereas the CSH associated with CLD exerts 
additional effect that leads to even longer I-V interval. The longer I-V 
interval is suggestive of an impairment or delay in myelination of 
the central auditory pathway, which is well related to the frequent 
episodes of hypoxaemia or prolonged hypoxaemia occurring 
during the course of neonatal CLD. This finding is comparable 
with what was found in animal experiments that prolonged or 
chronic sublethal hypoxia can result in severe impairments in 
corticogenesis in the developing brain and a significant decrease 
in subcortical white matter [6]. 

Hypoxia often occurs during early life and damages the 
central nervous system such as the auditory system, resulting 
in neurological impairment and neurodevelopmental disorders 
[3,19,38-45]. During the course of CLD, the frequent episodes of 
hypoxaemia or prolonged hypoxaemia in neonatal CLD inevitably 
leads to CSH [14,37]. The auditory impairment in neonatal CLD 
could be related to various perinatal risk factors, but CSH must 
play a significantly adverse role in the impairment. Since none of 
our CLD babies had any other concomitant major brain pathology 
that may confound the results, the major BAER abnormalities 
found in our CLD babies are most likely to be mainly attributed 
to CSH due to the frequent episodes of hypoxaemia or prolonged 
sublethal hypoxaemia during the course of CLD. 

In addition to the latencies of BAER wave components, the 
amplitudes of waves I, III and V and the V/I amplitude ratios in our 
CLD babies did not show any significant differences from those in 
the non-CLD babies. Although the V/I amplitude ratio in the CLD 
babies was significantly different from that in the non-CLD babies at 
21/s and 91/s clicks, the differences were not systematic. Therefore, 
there were no major and systematic differences in BAER amplitude 
variables between the two groups of premature babies. The CSH 
associated with neonatal CLD does not exert any additional adverse 
effect on the amplitudes of BAER wave components. It appears that 
the neural origins of the amplitudes in premature babies are not 
significantly affected by the CSH associated with CLD.

Conclusion

Our premature CLD babies did not show any major differences 
in BAER variables that mainly reflect peripheral auditory function 
from the premature non-CLD babies. There seems to be no major 
difference in peripheral auditory function between premature 
babies with CSH and those without CHS. However, the I-V interval 
in the CLD babies was significantly longer than in the non-CLD 

babies. Clearly, premature babies with CSH are associated with 
poorer central, more specifically brainstem, auditory function. 
CSH occurring during the premature period exert adverse effect on 
myelination and functional status of the central auditory system.
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