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Introduction
Zika virus (ZIKV) is a flavivirus transmitted by the Aedes 

aegypti and Aedes albopictus mosquitoes with recent outbreaks 
in the Americas, and 84 countries and territories reporting active 
ZIKV transmission [1-3]. One of the greatest concerns regarding 
ZIKV infection is the risk of microcephaly. Microcephaly is a 
neurodevelopmental disorder characterized by a head size less 
than 2 standard deviations below the mean typical head size [4]. 
Infants with microcephaly can have a range of problems such 
as developmental delays, seizures, vision and hearing loss, and 
difficulty feeding.

There are two primary lineages of ZIKV, African and 
Asian; however, to date, only strains of the Asian lineage are 
associated with microcephaly [1,5-9]. The causal link between 
microcephaly and ZIKV infection was confirmed in 2016, as well 
as the capability of ZIKV to be transmitted by mosquito bites, 
sexual contact and contact with other bodily fluids [10-13]. ZIKV 
has been detected in placental, amniotic fluid, and brain cells 
[10,13-15]. Additionally, there has been a significant increase in 
microcephaly in Brazil linked to the ZIKV outbreak. 

The WHO declared ZIKV-associated microcephaly and 
other ZIKV-related neurological disorders to be a “public health 
emergency of international concern”. An estimated 0.034% 
to 13.2% of infants born to pregnant infected mothers will 
develop microcephaly [4,13,15-18]. It remains unclear what  

 
factors determine the susceptibility to ZIKV-related neurological 
abnormalities, though it is hypothesized that different ZIKV 
strains, pregnancy stages, and individual differences impact the 
response to ZIKV infection [16,17,19-21]. 

In vitro studies regarding ZIKV contributions to 
microcephaly

A normal brain develops from neural stem cells (NSCs) and 
their differentiated neural cells;therefore,abnormal proliferation 
or differentiation of NSCs during early development may result 
in microcephaly [22]. Research using human NSCs in vitro and 
in vivo mouse models verifies that ZIKV infects NSCs and can 
cause dysregulated survival, cell death, and decreased neuronal 
differentiation [7,21,23-27]. Studiesusing an African lineage 
murine neuro-adapted ZIKV strain (MR766) demonstrated 
an efficient infection of ZIKV in neural progenitors that were 
induced from human skin fibroblasts, which resulted significant 
cell death and apoptosis [28,29].

These studies showed high rates of infectivity and cell death 
in their respective models. While these findings represent the 
pioneering work in vitro with ZIKV and stem cells,the viral strain 
utilized was not reflective of clinically circulating strains. MR766 
is an African lineage strain of ZIKV and has been passaged in vitro 
numerous times [30]. As a result, there are some discrepancies 
between findings reported in studies using MR766 and clinical 
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data. Specifically, clinical findings show only a small percentage 
of neural cells infected with ZIKV, and even though there is a 
reduction in neural populations, there is not a large amount of 
cell death [13,16,31].

Another factor to note in studies using induced pluripotent 
stem cells is that these cells have been genetically manipulated 
and reprogrammed from mature cells into pluripotent cells. 
While it remains undetermined if this genetic manipulation may 
play a role in viral infectivity and subsequent cell behavior, it is 
important to note differences between these cells and primary 
fetal cells. 

A study was recently conducted utilizing a ZIKV strain 
from an outbreak in Puerto Rico in 2015 (PRVABC59) to infect 
primary human fetal neural progenitors [32]. This study showed 
lower infectivity rates of ZIKV as well as lower levels of apoptosis 
compared to the studies using MR766. This study was more 
reflective of clinical findings, and demonstrated that different 
strains of ZIKV could yield variable results. To better understand 
why only a subset of infants develop microcephaly, we used an 
in vitro culture system ofprimary human fetal brain-derived 
NSCs from three individual donors [33], and evaluated the 
effects of a ZIKV strain isolated from a 2015 Mexican outbreak 
(Mex1-7) on NSC survival and differentiation. Mex1-7 decreased 
NSC proliferation in all three donor strains, and, similar to the 
study using PRVABC59, there was very little apoptosis [32]. 
Interestingly, Mex1-7, significantly reduced neurogenesis (a 
process generating neurons) in two of the three donor strains, 
whereas the third donor strain experienced no change in 
neurogenesis.

The two strains that had a reduction in neurogenesis came 
from donors that were 9- and 13-week old of gestation. The 
donor strain that experienced no reduction in neurogenesis was 
also 13-week old [33]. This is an important factor considering 
clinical reports indicate that the first trimester of pregnancy 
is the time when fetusesare most susceptible to detrimental 
effects of ZIKV infection [19]. The donor-dependent responses 
of human NSCs in this study raised interesting questions about 
individual vulnerability and resiliency factors. Specifically, our 
study showed that in the two susceptible donor strains, there 
were significant alterations in transcriptome, particularly 
with regards to innate immunity and neurogenesis [33]. This 
suggests that innate immunity may be a key regulator of ZIKV’s 
neurological disruption. 

Use of in vitro systems is a valuable asset for ZIKV studies. 
They provide a relatively easy and well controlled system 
for understanding mechanistic details of ZIKV infection and 
subsequent cellular pathologies [34-37]. Recently, in vitro 
studies have shown that previous exposure to Dengue virus may 
result in antibody-dependent enhancement of ZIKV symptoms 
[38-41]. Furthermore, they provide a platform for medium to 
high throughput screening of various drugs and therapeutics to 
combat ZIKV infection [42-49].

In vivo studies regarding ZIKV contributions to 
microcephaly

While in vitro systems are critically important for developing 
our understanding of key mechanistic details, in vivo studies 
are necessary for providing a more translational perspective 
regarding the development and systemic pathogenesis of 
ZIKV-associated microcephaly. In non-human primates, it has 
been shown that subcutaneous inoculation with ZIKV results 
in development of fetal brain lesions [50]. However, due to 
financial and ethical constraints of non-human primate studies, 
most work was conducted in rodent models. 

It is known ZIKV directly infects NSCs of the fetus and impairs 
growth in mice [18,20,51,52]. Wu and colleagues showed that 
ZIKV can be vertically transmitted from mother to fetus and result 
in cortical development deficits [51]. This study was unique in 
that it used an Asian lineage ZIKV strain isolated from a patient 
during an acute phase of the infection, and was subsequently 
used to infect fetal mice. They found that ZIKV infection 
significantly reduced proliferative neural cortical progenitor 
cells and altered genes associated with microcephaly and cell 
cycle progression [51]. Another study conducted by Cugola used 
a Brazilian ZIKV strain to infect pregnant dams, and revealed 
that the pups displayed a variety of birth defects including brain 
malformations [53]. They also found that there was a significant 
upregulation in genes associated with autophagy and apoptosis, 
indicating that the developmentalabnormalities may be a result 
of dysregulated autophagy and increased cell death during 
development [53].

In 2016, Rossi and colleagues developed and characterized 
a novel murine model to study ZIKV infection [54]. This unique 
mouse model is deficient in interferon-alpha receptor and displays 
an age-dependent response to ZIKV infection. Additionally, this 
mouse model is shown to harbor virus in the testis, similar to 
humans, which may make this strain optimal in studying sexual 
transmission of ZIKV.The age-dependent response of this mouse 
may make it ideal for studying developmental deficits associated 
with ZIKV infection as well as screen various drugs at different 
stages of infection [54].

Clinical studies regarding ZIKV contributions to 
microcephaly

In addition to animal and cell culture models to elucidate the 
mechanism of ZIKV infection, clinical studies have made great 
strides in detection and characterization of ZIKV pathologies. 
A study by de Fatima Vasco Aragao and colleagues detailed 
computed tomography (CT) findings from 22 children with 
signs of ZIKV infection [55]. This study showed that 95% of 
children had cortical development malformations, and 91% had 
decreased brain volume [55]. Ventriculomegaly, or enlargement 
of the ventricles, was observed in all of the 8 children who also 
underwent MRI [55]. Another study by Strafela et al. reported 
similar findings from autopsy evaluation of a ZIKV-infected 
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fetal brain approximately 33 weeks old [56]. Among signs of 
lissencephaly and pachgyria, ventriculomegaly and thinning of 
white matter was also present [56]. Despite the clear clinical 
signs associated with ZIKV infection during development, there 
reamin key barriers to early diagnosis. A recent manuscript 
by Kaushik and colleagues discusses the use of smart sensing 
techniques to monitor ZIKV infection progression during 
development [57]. Use of smart sensing techniques such as 
electrochemical biosensors increases availability and ease 
of efficient diagnosis, compared to the broadly used reverse 
transcription-polymerase chain reaction (TPCR) method of 
diagnosis [57].

Conclusion

Advances in cell culture and animal models are beginning to 
help us understand the mechanism of ZIKV-induced microcephaly, 
though much work is still needed [58]. It is apparent from 
current work that ZIKV causes decreased proliferation and 
neurogenic differentiation during fetal development.However, 
given the relatively low infectivity of circulating ZIKV strains, 
more work should be done to investigate how host determinants 
mediate the development of microcephaly.Future studies should 
begin to focus on individual vulnerability factors which may 
increase susceptibility to ZIKV-associated neurological deficits. 
In this regard, current literature suggests host immunity may be 
a promising target. Figure 1 outlines the current understanding 
of ZIKV infection progression and highlights the current 
areas being targeted to prevent ZIKV infection and associated 
neurological deficits (Figure 1). In conclusion,ZIKV continues 
to present a public health threat, and the associated risk of 
microcephaly warrants further investigation.

Figure 1: Showing a right paratracheal nodule measuring 23 x 
16 mm (arrow) done prior to treatment. 
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