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Introduction

The intervertebral discs (IVD) are partially movable joints 
that connect each of the vertebral bodies in the spine, functioning 
both to transfer loads and impart mobility [1]. Intervertebral 
discs are composed of an annulus fibrosus (AF) and a nucleus 
pulposus (NP). The AF is a strong radial tire–like structure made 
up of lamellae; concentric sheets of collagen fibers connected to 
the vertebral end plates. The extracellular matrix (ECM) of the 
central NP contains large quantities of the proteoglycans (PGs). 
Degeneration of the IVD is strongly implicated as a major cause 
of low back pain (LBP) [2,3]. Disc degeneration has been found 
to be associated with the loss of PGs function [4]. The etiology 
of disc degeneration has proven challenging to characterize 
because it is poorly defined and its progression is closely linked 
to aging [5]. Current knowledge of the principal pathogenesis 
resulting in this condition is limited.

Proteoglycans are macromolecules consisting of a protein 
core and glycosaminoglycans (GAGs) side-chains [6]. GAGs are 
unbranched carbohydrate chains of repeating disaccharide 
units. Since GAGs are negatively charged, they bind to other 
matrix molecules, cell adhesion molecules, and growth factors 

[7]. PGs can be divided into two classes: one class is the small 
leucine-rich proteoglycans (SLRPs) such as decorin, biglycan, 
fibromodulin, lumican, and mimican; another family consists of 
aggrecan, versican, brevican, and neurocan [6]. In this review, 
we discuss the biochemical characteristics of SLRPs in the 
intervertebral disc degeneration. Given the recent study that 
implicates SLRPs as the key components for IVD degeneration 
progression.

SLRPs Classification

The class of SLRPs is a family of homologous proteoglycans 
harboring relatively small (36–42 kDa) protein cores harboring 
tandem leucine-rich repeats and undergoing post-translational 
modifications, including substitution with glycosaminoglycans 
(GAGs) side chains of various types [8, 9]. Originally, the SLRPs 
were grouped into three distinct classes based on nucleotide 
and protein sequence conservation, the organization of disulfide 
bonds at their N and C termini, and their genomic organization. 
More recently, the SLRPs gene family has expanded to encompass 
18 genes classified into five distinct subfamilies by common 
structural and functional properties [10] (Figure 1). SLRPs are 
proteoglycans that have both protein cores and GAGs chains, 
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although non-canonical class IV and V SLRPs that do not contain 
any GAGs are also included in this family. The first class has a 
unique N-terminal Cys sequence. This includes decorin, biglycan 
and asporin, which are encoded by genes composed of eight 
exons with intron junctions in highly conserved positions [11]. 
The second class is comprised of five sub-members, including 

fibromodulin, lumican, keratocan, proline/arginine-rich end 
leucinerich repeat protein (PRELP) and osteoadherin, which 
have an identical cysteine-rich region before the leucine-rich 
repeats (LRRs) [12, 13, 14]. This class of SLRPs is characterized 
by clusters of Tyr sulfate residues at their N-termini and contains 
primarily keratan sulfate chains and polylactosamine [15].

Figure 1: Classification and structural relationships of the SLRPs family. The consensus for the N-terminal Cys-rich cluster is shown next 
to the brackets. 
ECM2: extracellular matrix protein 2; PRELP: proline/arginine-rich end leucine-rich repeat protein

The GAGs of SLRPs are differentially processed in development 
and aging, and are variable with regard to size, number, sulfation 
and epimerization in different tissues [16]. Through O-linked 
oligosaccharide, chondroitin sulfate/dermatan sulfate (CS/
DS) chains are attached to core protein decorin [17,18]. In the 
case of decorin, a single CS/DS linkage site is present near the 
amino terminus of the core protein [19, 20], whereas lumican 
and keratocan possess four or five potential keratan sulfate 
(KS) attachment sites in the central leucine-rich repeat region 
of each core protein molecule [21,22,23], and mimecan has 
two potential KS attachment sites [24, 25]. Current molecular 
models of the corneal stroma suggest that these proteoglycan 
core proteins wrap themselves laterally around the collagen 
fibrils in a manner that folds their hydrophobic domains inside, 
against the collagen fibrils [26]. In contrast, the highly sulfated 
GAG chains (together with their associated water molecules of 
hydration) are thought to stick out laterally away from the sides 
of the collagen fibrils, forming an exterior hydrophilic shell. 
The thickness of that shell matches the thickness of the shell 

surrounding adjoining fibrils, producing a very precise center-
to-center spacing between the collagen fibrils characteristic 
of the corneal stroma and necessary for its transparency [27]. 
Through this interaction with collagen (mostly with type I), PGs 
play important biological roles in collagen fibrillogenesis and 
matrix assembly.

Structure of the Intervertebral Disc

The intervertebral discs lie between the vertebral bodies, 
linking them together (Figure 2). They are the main joints of the 
spinal column and occupy one-third of its height. Their major 
role is mechanical, as they constantly transmit loads arising from 
body weight and muscle activity through the spinal column. They 
provide flexibility to this, allowing bending, flexion and torsion. 
They are approximately 7–10mm thick and 4cm in diameter 
(anterior–posterior plane) in the lumbar region of the spine 
[2,5]. Intervertebral discs consist of an outer fibrous ring, the AF 
disci intervertebralis, which surrounds an inner gel-like center, 
the AP [5]. The AF is a strong radial tire–like structure made up 
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of lamellae; concentric sheets of collagen fibers connected to the 
vertebral end plates. The central NP contains large quantities 

of the SLRPs and aggrecan, which aggregates along chains of 
hyaluronan [28]. 

Figure 2: Schematic representations of the normal intervertebral disc. 
A: A line drawing of the spinal segment consisting of two vertebral bodies and a normal intervertebral disc sandwiched between them. 
B: A line drawing of the intervertebral disc structure composed of an annulus fibrosus and a nucleus pulposus.

The GAGs side chains of these PGs carry a fixed negative 
charge and generate an osmotic swelling pressure within an 
irregular meshwork of collagen II fibrils. Two thin endplates of 
hyaline cartilage extend superiorly and inferiorly over the inner 
AF and NP to interface with the vertebral bodies, and function to 
regulate nutrient diffusion between the disc and the vertebral 
bodies [29,30]. In the outer regions of the AF, collagen fibers 
anchor directly into the vertebral bone.

Biological Roles of SLRPs in the Intervertebral Disc

It is now firmly established that specific SLRPs are 
functionally involved in intervertebral disc development and 
homeostasis. The SLRPs play important roles in the control of 
collagen fibrillogenesis, growth factor binding and sequestration 
or presentation and they can interact with signaling molecules 
controlling proliferation, differentiation and ECM synthesis 
and turnover [31]. Decorin regulates collagen fibrillogenesis, 
collagen degradation, cell growth and extracellular signaling in 
the ECM and connective tissue formation in skeletal muscle [32-
34]. Fibromodulin and lumican are close homologues and play 
a role in the regulation of the assembly of collagen monomers 
into fibrils, which is important to the structural and mechanical 
integrity of connective tissues [35,36]. It has been reported that 
fibromodulin and lumican can influence collagen fibrillogenesis 
and hence fibril thickness [37]. 

Fibronectin is probably the most ubiquitous and best 
characterized of the adhesive glycoproteins. It plays a key role in 
matrix organization by interacting with integrins such as a5b1 
on cell surfaces, as well as ECM components such as collagen, 
fibrin and heparan sulfate (HS) PGs [38]. Many interactions 
between the cell and its surrounding ECM affecting cell adhesion, 
morphology and migration are modulated by glycoproteins 
(on cell surfaces and within the ECM). Normal disc function 
depends upon a balance between these activities. GAGs may also 
play an important role in regulating the development, growth 
and homeostasis of the disc through their ability to interact 
with soluble bioactive signaling molecules via sulfation motif 
sequences within their chain structure [39,40]. In general, the 
GAGs content of the disc is greatest within the NP, decreasing 
outwards towards the edges of the AF [41]. Sulfation confers 
a strong negative charge on the GAGs which allows them to 
bind water and provides viscoelastic properties to disc tissues 
[42]. The mature NP has the highest concentration of KS of any 
tissue and the KS isoform has a much larger chain length than 
equivalent isomers in other tissues [43,44].

Changes of SLRPs in Intervertebral Disc Degeneration

The most significant biochemical change to occur in disc 
degeneration is loss of proteoglycans. With increasing age and 
degeneration, the disc changes in morphology, becoming more 
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and more disorganized. One of the major changes in ageing and 
disc degeneration is a decrease in fibromodulin in the adult 
NP and an increase in lumican in the AF during early juvenile 
development [45]. This may also involve structural changes, 
characterized by a loss of KS attachment [46]. Additionally, the 
fragmentation of fibromodulin is identified in the process of IVD 
degeneration and is the most extensively fragmented in the IVD 
[47]. Biglycan deficiency may be a possible mechanism of IVD 
degeneration, with disruption of the organization of collagen 
fibres and hence the ECM meshwork [48,49]. Fibromodulin is 
more abundant in the AF than in NP at all ages, and lumican 
is much more abundant in NP than in AF in the juvenile disc 
[46]. Keratocan has been identified in the IVD of patients with 
various disc disorders, in the forms of intact core protein 
and small fragments. Keratocan is either non-glycosylated or 
composed of monosulfated GAGs chains [50]. In addition, during 
maturation and ageing there is a steady increase in the ratio of 
KS to CS and an increase in the sulfation of the KS disaccharides. 
The concentration of CS/DS in the disc decreases with age and 
especially during the process of degeneration [51,52].

In addition, several matrix metalloproteinases (MMPs) have 
been identified in the IVD that appear to play a role in pathological 
degradation of the PGs in the ECM of the IVD [53]. Increased 
amounts of gelatinases (MMPs 2 and 9) [54], collagenases 
(MMPs 1, 8, 13) and stromelysin (MMP3) [55, 56] are found in 
more degenerate human IVD. Interestingly, the production of 
tissue inhibitors of metalloproteinases (TIMPs) and MMPs, or 
aggrecanases, appears to be linked; in more degenerate discs; 
increased MMP levels are accompanied by TIMP 1 [55] and TIMP 
2 [56].

Furthermore, the loss of PGs in degenerate discs has a major 
effect on the disc’s load-bearing behavior [57]. With loss of PGs, 
the osmotic pressure of the disc falls and the disc is less able to 
maintain hydration under load; degenerate discs have a lower 
water content than do normal age-matched discs, and when 
loaded they lose height and fluid more rapidly, and the discs tend 
to bulge [58]. Loss of PGs and matrix disorganization has other 
important mechanical effects; because of the subsequent loss of 
hydration, degenerated discs no longer behave hydrostatically 
under load [59]. With consequent loss of elasticity, the ligament 
will tend to bulge into the spinal canal, leading to spinal stenosis 
– an increasing problem as the population ages [5]. Moreover, 
lumbar disc herniation is one of the most common spinal 
degenerative disorders which may lead to LBP, radicular leg pain 
and disability.

Conclusion and Perspectives

Degeneration of the intervertebral discs is a natural 
progression of the aging process. The most significant 
biochemical change to occur in disc degeneration is loss of 
proteoglycans. SLRPs plays a key role in mediating and keeping 

the normal function of intervertebral disc, which may propose 
a potential of SLRPs-based therapies in disc regeneration and 
possibly the repair of other skeletal tissues.
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