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Abstract

Bone morphogenetic proteins (BMPs) comprise a major subgroup of the transforming growth factor (TGF)-β superfamily. They 
play pivotal roles in embryonic development and tissue homeostasis in adults. Deregulation of BMP and TGF-β signaling contributes to 
developmental anomalies and multiple diseases. In this mini-review, we focus on BMP signaling in inflammatory disorders of the pancreas, 
acute and chronic pancreatitis, in contrast to TGF-β signaling. We then discuss molecular mechanisms that interact with and connect between 
the BMP and TGF-β signaling pathways. Lastly, we review potential implications of these molecular mechanisms for therapeutic development. 
In summary, BMP signaling pathway plays different roles during pancreatitis disease development, and the antagonism between BMP and 
TGF-β signaling can be manipulated for therapeutic development against pancreatitis. 
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Introduction
Bone morphogenetic proteins (BMPs) constitute a major 

subgroup of the transforming growth factor (TGF)-β superfamily, 
comprising 18 (several also named as growth differentiation 
factors) out of the total 33 members [1]. The TGF-β/BMP 
superfamily plays pivotal roles in embryonic development 
and tissue homeostasis in adults. Deregulation of the TGF-β/
BMP signaling contributes to developmental anomalies and 
multiple diseases [1,2]. The TGF-β/BMP superfamily signals 
through a complex of membrane-associated serine/threonine 
kinase receptors. In the canonical signaling pathway, BMP ligand 
binds to BMP receptors type I (BMPR1) and type II (BMPR2) 
on the cell surface and subsequently activates intracellular 
mediators Smad1/5/8 via phosphorylation [3]. In parallel, 
TGF-β binds to TGF-β receptors TβRI and TβRII and activates 
Smad2/3. The phosphorylated Smad1/5/8 or pSmad2/3 form 
complexes with Smad4, which translocates to the nucleus to 
regulate transcription of target genes [4,5]. Activation of specific 
Smads may lead to distinct or opposing biological outcomes,  

 
most notably in disease states [3,6,7]. Both BMP and TGF-β 
also activate other non-canonical signaling pathways [8,9]. 
BMP signaling can be regulated at the extracellular, membrane, 
and intracellular level. The most investigated molecules that 
negatively regulate BMP signaling extracellularly are the BMP 
antagonists, which sequester BMPs and prevent their interaction 
with the cell surface receptors. Over 12 members of endogenous 
BMP antagonists have been identified to date [3,10].

Lines of evidence demonstrate that BMP signaling has pro-
inflammatory properties in bronchial epithelial cells during 
airway inflammation [11], in activated endothelial cells [12], and 
in atherosclerotic arteries [13]. Paradoxically, BMP signaling has 
anti-fibrogenic functions in several organs, including kidneys, 
lungs, and liver [14-16]. However, the role of BMP signaling 
in the pancreas, specifically within pancreatic inflammatory 
disease processes, is unclear. 

In recent years, our group has focused on the role of BMP 
signaling in acute (AP) and chronic pancreatitis (CP), the highly 
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debilitating and painful inflammatory diseases of the pancreas. 
While a majority of AP cases self-resolve, approximately 16% 
progress to CP after repeated episodes of AP (RAP), mainly in 
patients with risk factors like alcohol and tobacco use [17,18]. CP 
is the #1 cause of Type 3c Diabetes [19], and a major risk factor 
for pancreatic cancer, one of the most lethal cancer types [20]. 
Unfortunately, the standard care for pancreatitis lacks specific 
pharmacological therapies, and remains primarily supportive. 
Thus, there is a pressing need to identify key mechanisms 
contributing to the disease development and progression, in 
order to develop innovative therapeutic strategies for blocking 
and reversing the pancreatic destruction associated with 
CP; ultimately, reducing the risk for developing diabetes and 
pancreatic cancer in these patients.

To understand the role of BMPs in AP, we utilized experimental 
animal and cell models, and revealed that BMP/Smad1/5 
signaling is activated; inhibition of BMP signaling attenuates 
the disease severity, indicating a pro-inflammatory role of BMP 
signaling in AP [21]. The role of TGF-β signaling is controversial, 
with both pro-inflammatory and anti-inflammatory roles 
reported [22]. However, due to a lack of availability of most 
human AP samples, our study regarding BMP signaling is only 
proof-of-concept. Much work is needed to establish clinical 
relevance by identifying secreted factors of the TGF-β/BMP 
superfamily from patient blood  and pancreatic juice, in addition 

to further study of the mechanisms in experiment models.

Several studies from our group have demonstrated opposing 
roles of BMP and TGF-β in CP. For instance, in pancreatic stellate 
cells, the key executive cells in pancreatic fibrosis, BMP2 alone 
does not induce extracellular matrix (ECM) expression but 
inhibits TGF-β induced-ECM production [23]. Knockout of 
BMPR2 in mice exacerbates CP, leading to enhanced inflammation 
and fibrosis, two hallmarks of CP [24]. These findings reveal a 
protective and anti-fibrogenic role of BMP signaling in CP, in 
contrast to the pro-fibrogenic TGF-β signaling [25,26].

To search for molecular links between BMP and TGF-β, 
we focus on Gremlin1 (Grem1), a BMP antagonist, which has 
reported pro-fibrogenic function in several organs [15,27,28]. 
We demonstrated increased levels of Grem1 in human and 
mouse CP, associated with elevated TGF-β. TGF-β can induce 
Grem1, and Grem1 can block BMP2 induced Smad1/5 signaling 
in pancreatic stellate cells. Knockout of Grem1 in mice attenuates 
pancreatic fibrosis [29]. These findings propose a feed-forward 
loop between TGF-β, Grem1, and BMP, in which Grem1 may act 
as a nodal point between the pro-fibrogenic TGF-β and the anti-
fibrogenic BMP signaling pathways. Thus, the level of Grem1 
expression may define the disease progression from AP, RAP, to 
CP (Figure 1). 

Figure 1: Proposed interaction between BMP, TGF-β, and Grem1 During AP to CP Progression.

Overall, temporal changes of the TGF-β/BMP signaling 
molecules and Grem1 during disease progression from AP to 
CP [23,24,29,30], provide rationale for further translational 
study. Since TGF-β has a broad spectrum of biological functions, 
systemic TGF-β blockade may yield unexpected or detrimental 
effects. To circumvent these effects, modulation of TGF-β down-
stream mediators and of the opposing BMP signaling that 
desensitize cellular responses to TGF-β or antagonize TGF-β 
signal transduction should be explored. Thus, the therapeutic 
goal is to restore or up-regulate the anti-fibrogenic BMP 
signaling pathway and to counteract the pro-fibrogenic TGF-β 

signaling pathway. This can be executed by time-dependently 
administering the Grem1 neutralization antibody [31] or 
specific microRNAs [32,33] that can inhibit Grem1 as well as 
release suppression on BMP signaling, or in combination with 
the specific small molecules or peptides that can activate BMP 
signaling [34,35]. 

Conclusion
Studies on the different roles and the reciprocal regulation 

of BMP and TGF-β not only advance our knowledge on how the 
same superfamily members regulate each other’s functions 
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in diseased states, but also provide insights on how the 
antagonistic roles of BMP and TGF-β signaling can be modulated 
as therapeutic approaches. 
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