
Introduction

Cancer is the second leading cause of death among all diseases 
[1]. Although the cancer death rate is decreasing in the recent 
decade, the total number of cancer deaths is increasing, probably 
due to the expanding cohort of older individuals. In the past two 
decades, the death rate for numerous cancers has declined while 
the five-year survival rates of many cancer patients have improved 
substantially [1,2]. Although the number of people with liver 
cancer ranks twelfth among cancer patients worldwide, the death 
rate attributed to liver cancer ranks second among all cancers 
worldwide due to the lack of effective and safe treatments of 
liver cancer. Furthermore, liver cancer remains the second lowest 
cancer in terms of 5-year survival rate. These results highlight 
the observation that progress in the treatment of liver cancer 
has lagged behind that of other cancers. Its incidence has been 
increasing in recent years and is predicted to rise as people living 
with chronic liver diseases continue to age [3]. Other than tumor 
resection and orthotopic liver transplantation, there is currently 
no effective treatment. Even after receiving tumor resection and 
transplantation, tumor recurrence is inevitable.

Current efforts are focused on finding drug combinations 
that increase the chances of eliminating cancer recurrence. Yet,  

 
the major challenge of combination therapy in liver cancer is the 
additional toxicity caused by combination of drugs with different 
mechanisms. Hepatocellular carcinoma (HCC) contributes to 
85-90% of all liver cancers. In experimental animal models, 
it is established that HCC cells are derived from chronically 
damaged hepatocytes [4,5]. Massive hepatocyte death promotes 
compensatory proliferation in the liver as well as inflammation. 
The activation of hepatocyte regeneration to replace hepatocytes 
may induce DNA damage and further predispose the chronically-
injured liver to HCC due to DNA damage caused by replication 
stress [6]. Therefore, cytotoxic therapies that non-selectively 
kill cancer cells and hepatocytes may enhance liver injury, 
complicating successful therapeutic treatment. This conundrum 
is the principal reason why it is extremely hard to treat HCC 
with combination therapy. Therefore, treatments that induce 
additive or synergistic anti-oncogenic properties without causing 
additional toxicity would be desirable for HCC.

This commentary will argue for a new strategy to use molecules 
derived from nature, more specifically flavones, as complementary 
medicine to current anticancer drugs to prevent HCC recurrence. 
Flavones are present in fruits and plants commonly consumed 
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Abstract 

Hepatocellular carcinoma (HCC) is one of the most feared complications of liver disease due to its high mortality rate combined with lack 
of effective treatments, which at present are predominantly ablative and surgical. Current molecularly-targeted therapeutic treatments of HCC 
target common survival pathways of cancer cells and regenerating hepatocytes. Therefore, the combination treatment designed to eliminate 
drug-resistant tumor cells may be additionally toxic to hepatocytes. Since hepatocyte death promotes HCC, hepatotoxicity presents a challenge for 
successful HCC treatments. On the other hand, although cancer cell death reduces HCC burden, hepatocyte death exacerbates HCC development. 
Therefore, balancing hepatocyte death and cancer cell death is a key aim for successful HCC treatments. Consequently, small molecules enhancing 
cancer cell death without killing hepatocytes are potentially useful adjuvants of anti-HCC treatments. Flavones, plant-derived natural products, 
are potent adjuvants due to their cancer selective property. This commentary will discuss current challenges of HCC treatments and the potential 
use of flavones as adjuvants of HCC treatments.
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by humans in addition to serving as components of several 
traditional herbal medicines. These compounds have moderate 
anticancer activities, though insufficient for use as single agents. 
The primary advantage of flavones is that they are relatively non-
toxic to normal cells. They accumulate in the liver and even protect 
the liver from damaging chemicals. Therefore, the combinatorial 
activity of flavones and anticancer agents to treat liver cancer 
holds promise.

Tumor Recurrence in HCC

The most effective method to remove the tumor burden in liver 
cancer is tumor resection or liver transplantation. In HCC patients 
who have undergone liver transplantation, the risk of recurrence 
is inevitable due to the long-term suppression of immune system 
by immunosuppressants used to reduce transplant rejection 
or regrowth of the remaining undetected tumor cells. Over the 
years, different immunosuppressive drugs have been introduced 
for liver transplantation in liver cancer patients [7]. Mammalian 
target of rapamycin complex (mTORC)1 inhibitors are among the 
most impressive drugs due to their potent immunosuppressive 
and anti-oncogenic effects. Earlier studies reported that mTORC1 
inhibitors reduced tumor recurrence in HCC patients post 
liver transplantation compared with conventional calcineurin 
inhibitors. Nevertheless, a large phase 3 trial (SILVER) showed 
that although the effect of mTORC1 inhibitors is most beneficial 
3 - 5 years post transplantation, recurrence is inevitable after 5 
years [8]. One critique of this trial is the heterogeneity of protocols 
to manage immunosuppression utilized by different participating 
centers. Nonetheless, there exist recurrent HCC cells resistant to 
mTORC1 inhibitors.

Drug-resistant HCC cells are commonly identified with the cell 
surface markers cluster-of-differentiation (CD)13, CD90, CD133, 
CD44 and epithelial cellular adhesion molecule (EpCAM) [9]. 
These cells are considered cancer stem cells or tumor-initiating 
cells (TICs) since they appear during liver cancer-initiating 
events such as DNA damage, or after therapy with hepatotoxic 
agents or liver cancer drug treatments. Diethylnitrosamine (DEN) 
is a commonly-used carcinogen that promotes liver cancer in 
experimental rodent models by damaging DNA. DEN induced 
CD133+ and CD44+ liver tumor initiating cells (TICs) experimental 
mouse livers [5,10]. Liver toxicity caused by alcohol and hepatitis 
virus proteins induced CD133+ liver TICs in experimental mouse 
models [11,12]. Multiple TIC markers were induced in tumors 
resistant to sorafenib, a drug approved for liver cancer therapy 
with a slight survival benefits to HCC patients [13]. A single-cell 
transcriptomic analysis further revealed the heterogeneity of 
HCC [14]. Therefore, it appears that there are more than one or 
more TIC markers appeared to cause drug resistance in HCC. 
Nonetheless, the molecular mechanisms of how these diverse TIC 
markers appear is unclear. One possibility is the emergence of 
new clones from mutated regenerating hepatocytes in HCC livers 
from chronic liver injury.

Current therapeutic options for HCC treatment have the 
potential of exacerbating HCC tumorigenesis. Even tumor resection 
triggers hepatocyte regeneration in both normal and diseased 
livers [15]. After partial hepatectomy, regeneration-induced 
replicative stress enhanced tumorigenesis in multidrug resistant 
(mdr)2-/- liver, which is chronically inflamed [16]. Sorafenib, a 
drug approved for HCC, targets the Raf/MEK/ERK pathway, also 
essential for hepatocyte regeneration [17]. Formerly, mTORC1 
would be a promising drug target of HCC since mTORC1 activation 
is present in the majority of HCCs. Mice without tuberous sclerosis 
(TSC)1, a negative regulator of mTORC1, spontaneously develop 
liver tumors [18]. Yet, when mTORC1 is specifically knocked out in 
mouse liver, DEN-induced tumorigenesis is enhanced [19]. Protein 
kinase B or Akt, another promising target of HCC, is also essential 
for hepatocyte regeneration. Knocking out Akt in mouse liver 
promotes spontaneous development of liver tumors [20]. Liver 
injury is also observed in patients treated with pan-Akt inhibitors 
in clinical trials. Therefore, the treatment of liver cancer patients 
with Akt inhibitors is not warranted in patients with chronic 
liver injury [21]. Even recently the approved immune checkpoint 
inhibitor, nivolumab, also causes liver injury in 20% of patients 
[22] as hepatotoxicity is a commonly observed adverse effect of 
immunomodulatory drugs [23]. Therefore, tumor recurrence 
through nonspecific hepatocyte killing poses an obstacle for 
current and future regimes of HCC treatments.

Natural medicine and nurtured medicine are potential 
combinations for cancer

Nature has provided molecules that help resist cancer 
development. Plant-derived phytochemicals are natural products 
with chemo-preventive and anticancer properties. Indeed, most 
FDA-approved drugs are products of nature or derived from 
natural products. Among 174 drugs approved by FDA to treat 
cancer, 136 (78%) are small molecules [24]. 113 of 136 drugs 
(83%) are either natural products or synthetic compounds derived 
from the pharmacophores of natural products. Paclitaxel, a drug 
approved to treat a variety of cancers due to its ability to target 
cancer cells, is one of the recognized natural products that was 
developed as an effective anticancer drug. Later, the development 
of albumin-bound paclitaxel, also known as the trade named 
Abraxane, facilitates enhanced bioavailability and delivery of 
paclitaxel to tumor tissues with low toxicity. In other cases, drugs 
such as sorafenib, ataluren, and vemurafenib were synthesized 
after screening pharmacophores derived from natural products. 
These examples highlight the importance of natural products 
in anticancer drug development. More importantly, molecules 
derived from nature can be further modified to increase their 
therapeutic effectiveness.

Prior to proceeding further with this argument, it is necessary 
to understand some caveats. Herbal extracts contain multiple 
components of varying known and unknown toxicities that 
create barriers to taking full advantage of the naturally-derived 
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beneficial compounds. These barriers should be addressed by 
the careful experimental testing of purified compounds. Natural 
products though generally possessing mild anticancer activities 
as single agents, can provide additive or synergistic anticancer 
activities when combined with synthetic compounds. Since 
the natural compounds, which have been taken by humans in 
traditional medicine or as dietary supplements for hundreds 
of years, possess relatively no known toxicity, it is desirable to 
propose the use of natural medicines together with ‘nurtured 
medicine’ (synthetic small molecules, therapeutic antibodies, 
antibody conjugates, and modified cells). Natural and nurtured 
medicine could form complementary therapeutic efficacy without 
added toxicity. In some cases, they could even provide lower 
toxicity usually associated with nurtured medicine.

Potential use of flavones in liver cancer therapy

Flavonoids are a large class compounds sharing common 
basic structure [25] enriched in edible fruits and plants as well as 
plants traditionally known to possess anti-inflammatory and anti-
neoplastic medicinal properties [26]. Flavonoids are classified 
into at least six categories according to their structure: flavones, 
anthocynidins, flavan-3-ols, flavonols, flavanones, and isoflavones. 
These compounds have attracted the interest of the cancer 
research community due to the results of several epidemiological 
studies suggesting that flavonoids can lower the incidence of 
cancer and overall mortality [27-29], although some studies show 
no effects of dietary intake of flavonoids to cancer incidence [30].

The drawbacks of these compounds include their nonspecific 
antioxidant activity and low plasma availability, limiting their 
use as potential cancer therapeutic agents. Their 50% killing 
concentration, IC50, for cancer cells is ~10 μM. Because flavonoids 
possess functional hydroxyl groups on their backbones, they 
are considered as “polyphenols and “antioxidants”. The current 
perception toward compounds with antioxidant properties is 
that they are nonspecific. Moreover, one of the roadblocks in 
using antioxidant compounds as anticancer drugs is their rapid 
metabolism and low bioavailability in plasma. However, recent 
drug development efforts utilize a type of antioxidant functional 
group called “Michael acceptor” that target cysteine residues 
on the target proteins to covalently inactivates the targets [31]. 
Traditionally, compounds with this moiety are considered 
unsafe due to potential nonselective activity or unstable due to 
their highly reactive nature. However, conscientious efforts have 
led to a new strategy to degrade the target proteins using these 
electrophilic moiety as “warhead”. Successful FDA approved drugs 
were developed using this approach to covalently inactivate the 
disease targets [31-34].

Flavones are promising anticancer compounds for liver cancer 
due to their unique pharmacokinetics in liver. Although flavones 
affect numerous mechanistic important cancer-promoting 
pathways, few studies have addressed their selective activity in 
cancer cells versus normal counterparts. When flavones are tested 

together with other natural products in killing freshly isolated 
chronic lymphocytic leukemia (CLL) leukocytes and normal 
human peripheral blood mononuclear cells (PBMC), the flavones 
apigenin and tangeretin notably selectively kill CLL leukocytes 
over normal PBMC [35]. Although these compounds killed CLL 
cells in the μM range, a very high concentration (>40-50 mM) was 
needed to kill normal PBMC. Moreover, when these compounds 
were tested in a cancer cell line with the antioxidant response 
element (ARE) reporter system, relatively low antioxidant 
activity was present compared with other known oxidants or 
antioxidants. In a separate study, baicalein, a flavone enriched 
in many traditional Asian medicine preparations, selectively 
killed mouse Tumor Initiating Cells (TICs) without killing normal 
hepatocytes even at 100 mM [36]. These studies suggest that 
selective anticancer activity would be one attractive property of 
flavones for further development as anticancer drugs. 

The interest in baicalein for the treatment of liver disease 
owes to its being a major component of traditional oriental herbal 
medicine long thought to protect the liver. Baicalein is present in 
many oriental herbal extract preparations, most notably chinese 
skullcap (Scutellaria baicalensis Georgi) and Scutellariae radix 
(root of Scutellaria baicalensis). Although there is no clinical 
evidence reporting the benefits of using baicalein in liver diseases, 
high intake of baicalein is not associated with significant human 
toxicity [37,38]. Furthermore, Yan Gan Wan (YGW), a chinese 
medicine extract containing baicalein was nontoxic to mice fed 
with YGW for over a year [36]. Moreover, when these mice were 
challenged with DEN, liver cancer was prevented in mice fed with 
the diet containing YGW. When mice are fed with YGW, baicalein is 
accumulated in liver. These data suggest that baicalein can impair 
liver cancer formation without causing any toxicity. Furthermore, 
baicalein can protect liver from known hepatoxic chemicals [39-
40]. The dual anti-oncogenic and liver protective properties of 
baicalein warrant further study addressing its use as a potential 
adjuvant in the treatment of liver cancer.

Other flavones that show dual liver protection and anti-
cancer activities include Apigenin and Luteolin. Both Apigenin 
and Luteolin are found in fruits and vegetables such as parsley, 
celery and chamomile. Both showed hepatoprotective effects 
against several known liver damaging chemicals, diet and alcohol 
in mouse models. 

Summary

Although it is well established that hepatocyte death precedes 
HCC development, liver toxicity caused by current anti-HCC 
treatments have been largely ignored. This perspective points to 
this potential challenge and proposes new therapeutic strategies 
that selectively promote cancer cell death without affecting the 
viability of hepatocytes. Therefore, molecules that kill tumor cells 
without killing normal hepatocytes would be attractive adjuvants 
for HCC treatment. Baicalein is a flavone with both anti-oncogenic 
and liver protective property that kill liver TICs resistant to 
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mTORC1 inhibition, sparing normal hepatocytes. Therefore, 
baicalein should be considered as an attractive adjuvant for anti-
HCC treatments future clinical studies.
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