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Abstract 

Islet transplantation is an ideal treatment to cure diabetes. As shortage of donors is an insurmountable obstacle, the generation of insulin-
producing cells to replace islet cell may be a promising approach. Mesenchymal stem cells (MSCs) that possesses great differentiation potential 
to other types of cells become an attractive source for generation of insulin-producing cells (IPCs). Many methods such as gene transfection and 
gene editing were used to induce MSCs differentiation into insulin-producing cells. We review the new progress in this field, advantages and 
drawbacks of insulin-producing cells in clinical application.
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Mini Review

Diabetes mellitus (DM) is a global health concern with 
about 300 million individuals worldwide. The number of people 
suffered from DM may increase to more than 600 million by 2045 
[1]. Type 1 diabetes mellitus (T1DM) patients, whose islets are 
destroyed by an autoimmune-mediated response, account for 
5% of all diabetic patients. However, the existent treatments for 
the diabetes have kinds of drawbacks. Traditional exogenous 
insulin injections could maintain blood glucose level, but it could 
not reverse the chronic complications of diabetes, and there is 
a risk of hypoglycemia, which sometimes is lethal. Pancreatic 
transplantation may cure diabetes, but severe surgical trauma 
and life-long oral immunosuppressive drugs limit the use of 
pancreatic transplantation. Islet transplantation is an alternative 
treatment since it’s less invasive. However, the implementation of 
islet transplantation is also limited by limited islet availability and 
immune rejection. Mesenchymal stem cells (MSCs)-based therapy 
for T1DM has been the focus of many research over the past several 
decades. MSCs could be obtained from many types of tissue, 
including the bone marrow, fetal annexes, adipose tissue, dental 
tissues, skeletal muscle tissue, liver tissue, lung tissue, menstrual 
blood and pancreatic tissue [2-8]. The application of MSCs with 
the advantages of wide availability, negligible teratogenic risks,  

 
nonimmunogenic, differentiation potential to islet-like cell and  
immunoregulation may provide more competitive treatments 
comparing with other ones [9,10]. Therefore, MSCs are a promising 
option for therapy for T1DM.

Many literatures have reported that MSCs could be induced 
differentiation into insulin producing cells (IPCs). Tan found 
that pancreatic MSCs could differentiate into IPCs by the two-
step induction method [11]. Zhang considered that pancreatic 
MSCs could be functionally induced into IPCs with the optimized 
three‑step protocol [12]. Both Zhang & Gabr [13,14] reported that 
bone marrow‑derived MSCs were differentiated into IPCs. Adipose 
tissue‑derived MSCs could also be differentiated into IPCs [15,16]. 
Van and Tasi found that IPCs differentiated from umbilical cord 
blood‑derived MSCs could treat streptozotocin‑induced diabetic 
rats [17,18]. The methods of inducing MSCs differentiation into 
IPCs include the following: firstly, gene transfection or gene editing. 
The most commonly used genes such as pancreatic and duodenal 
homeobox 1 (Pdx1), neuronal differentiation 1 (Neurod1) and 
Mafa were transfected into MSCs singly or in combination by 
plasmid or vector [19-21]. These genes play a crucial role in 
pancreatic organogenesis and β cell function. The other genes 
such as neurogenin-3 (NGN3) and paired box 4 (PAX4) are also 

http://dx.doi.org/10.19080/ARGH.2021.18.555994
http://juniperpublishers.com


How to cite this article:    Hongxin L, Xiaohang L. Induce Mesenchymal Stem Cells Differentiation into Insulin-Producing Cells: Mini-Review. Adv Res 
Gastroentero Hepatol, 2022; 18(4):  555994. DOI: 10.19080/ARGH.2022.18.555994

Advanced Research in Gastroenterology & Hepatology

002

key for differentiation and maturation of islet cells [22,23]. Thi Do 
transfected porcine bone marrow derived MSCs with the insulin 
gene and generated IPCs which can improve hyperglycemia in 
streptozotocin-diabetic pig [24]. 

Recently many researchers pay more attention to microRNAs 
(miRNAs) which also play vital roles in the generation of IPCs 
from stem cells. Because miR-375, which is specific and most 
abundant miRNA in islets, contributes to the development of 
β cells [25], many researchers attach more importance to it. 
Jafarian reported that IPCs were generated from bone marrow 
derived MSCs by transfection with both miR-375 and anti-
miR-9 [26]. Bai et al. [27] induced umbilical cord derived MSCs 
differentiation into IPCs by transfection with miR-375 and miR-
26a. Zhao discovered a novel mouse miRNA which significantly 
promoted the differentiation of bone marrow derived MSCs into 
IPCs in vitro [28]. The breakthrough in genome editing makes 
it possible to induce endogenous human insulin transcription 
using the dCas9-VP160 transcriptional activator in human cells 
[29]. The CRISPR/Cas9 gene editing system identified the role 
of several transcription factors involved in pancreatic embryonic 
development [30], such as PDX1 and PTF1A, which are associated 
with several deficiencies in pancreatic agenesis. Secondly, 
directed differentiation. Currently, differentiation of stem cells 
into IPCs in vitro is being done using specific culture protocols. 
Generally speaking, cells were cultured in glucose-rich media 
with different growth and activation factors, which imitate the 
microenvironment in vivo for islet cell differentiation [31]. Gabr 
provided a 3-step differentiation protocol for inducing hBM-
MSCs differentiation into IPCs [14]. Ikemoto developed a simple 
protocol for differentiating IPCs from adipose derived MSCs with 
a 2-step protocol [32]. Three-dimensional (3D) culture is thought 
to better mimic the in vivo microenvironment, so Takeuchi and 
Khorsandi employed 3D culture to improve bone marrow/
adipose derived MSCs differentiation into IPCs [16,33]. Although 
great achievements have been obtained in this field, there are 
still some drawbacks. Firstly, the use of viral vectors faces risk of 
oncogene transactivation and spreading virus to human during 
clinical translation. The application of gene editing to human also 
faces huge ethical challenges. Secondly, directed differentiation 
protocols that induce MSCs to generate IPCs in vitro are expensive, 
difficult, time-consuming and less efficient. Thirdly, although the 
generated IPCs could reverse hyperglycemia in streptozotocin-
diabetic animals, they may be destroyed by the existing antibodies 
that have damaged the native β cells in T1DM after transplantation 
and could not function anymore.

Conclusion

In summary, there is still a long way to go before differentiated 
IPCs from MSCs could be transplanted to human. The MSCs-
derived IPCs should be able to control blood glucose level and 
should not be suspected of being teratogenic and tumorigenic, 

and they should avoid the damage by the antibodies in transplant 
recipients and function for a long time. Only when these standards 
are met, MSC-derived IPCs may be used in clinical practice on a 
large scale.
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