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Zinc Accumulation
The amounts of Zn in unpolluted soils typically are below 

125ppm [1-3] with the bioavailability of this metal in soil solution 
increasing at low pH and the organic ligands and hardness 
cations such as Ca2+ decreasing its availability [4]. In this context, 
plant species differ in both their Zn requirements and tolerance 
[5,6]. Most plants require leaf Zn concentrations greater than 
0.02-0.04mg g−1dw, whereas their growth is inhibited at leaf Zn 
concentrations greater than 0.1-0.77 mg g−1dw [6-8].

The threshold of toxicity is mostly determined by 
environmental pollution following industrial and agricultural 
activities, such as smelter and incinerator emissions, dispersal 
from mine wastes, excessive applications of Zn-containing 
fertilizers or pesticides and use of Zn-contaminated sewage 
sludges, manures or industrial wastes as fertilizers [4,9]. 
Nevertheless, in this case about 15-20 species (mostly belonging 
to the Brassicaceae) can hyper accumulate about 3000 mg Zn 
kg−1dw [5,10-13], since can tolerate more Zn in their tissues and 
even require greater leaf Zn concentrations for optimal growth 
[5,13,14].

In the roots, Zn prevails in the elongation zone, being 
concentrated in endo dermal cells of dicotyledonous species  

 
and in the pericycle of monocotyledonous species [15]. In 
Zn-hyper accumulator plants more than 30% of this metal is 
usually associated with cell walls, and much of the remainder is 
complexed with histidine [16,17].

Zn accumulation within shoots, although varying between 
plant species, accumulates in the leaf epidermal cells, with the 
exception of guard cells, particularly in older leaves [15,18-22], 
and trichomes [22-24]. In Zn-hyperaccumulator plants, 20-50% 
of Zn2+ is chelated with vacuolar carboxylic acids, such as citrate, 
malate, and oxalate, whereas up to 45% can also be associated 
with histidine, and the remainder is largely bound to phosphate-
groups and cell-wall components [16,17,20,25,26]. In the cereal 
grains, Zn accumulates in the aleurone and scutellum of the 
embryo, and, at a lower level in the endosperm [27-39]. 

Zinc Uptake and Translocation 
Metals availability for plant uptake is driven by complex 

interactions between the chemical properties of cations, the 
composition and physicochemical properties of the soil, microbial 
activity and plant roots [40]. In this context, Zn uptake, although 
depending of the composition in the growth media, follows a 
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Abstract 

Owing to continuous development of knowledge, to understand the mechanisms underlying the bio fortification with Zn in plants, a 
synoptical overview of this metal uptake, translocation and accumulation in plant organs are assessed. In this context, the mechanisms of bio 
fortification of plants with zinc are additionally correlated with soil interacting factors, namely pH and moisture.
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linear pattern with its concentration in the nutrient solution or 
in the soils [41-43], occurring its mobilization to the roots xylem 
through the symplast and apoplast in regions of the root lacking 
a Casparian Band, to the stele where it enters the xylem [5,8]. 
Nevertheless, inconsistent studies about kinetics uptake of Zn 
report the occurrence of active and passive mechanism [44-47], 
although being recognized that its mobility in the xylem fluids is 
highly due to its bind to light organic compounds [48].

Transport of bio available Zn2+ across the plasma membrane 
is the initial step of the uptake and accumulation kinetics, but 
cellular transition metal uptake systems seem to operate as 
uni porters or secondary carriers driven by protons, further 
implicating channel proteins. Some channels might let the 
passage of ions based solely on their positive or negative charge, 
whereas groupings of ion channels regulate the passage through 
the pore and can open or close by chemical or electrical signals 
and temperature. Additionally, non selective cation channels 
further have the capacity to catalyze passive fluxes of cations, 
namely Zn2+, through plant membranes [49]. Long-distance 
transport of Zn to the shoot, involves symplastic diffusion 
between interconnected root cells towards the stele and active 
loading across the plasma membrane of the xylem parenchyma 
into the apoplastic xylem [50]. Paralleling this xylem loading, 
the translocation rate of Zn from roots further depends of Zn 
accessibility and mobilization from vacuoles of the roots and a 
subsequent passage across the endodermis, where nicotinamine 
acts as a Zn ligand [51]. Within xylem sap, long-distance 
transport further implicates chelation by mobile low-molecular-
weight ligands present in the xylem sap [52-54]. Zn2+ destined 
for the developing seed leave the xylem, follows an active loading 
kinetics into the phloem [55,56] and, therefore, this metal ions 
are likely to form complexes with YSL proteins transport metal–
nicotinamine complexes [57]. Through symplastic efflux from 
the phloem and plasma membrane influx Zn reaches the embryo 
and the endosperm of the seed [55]. 

Bio Fortification with Zinc
The bio fortification of plants with Zn is dependent on the 

size of plant-available Zn pools in soil. Additionally, transport 
of Zn to root surface in soils occurs predominantly via diffusion 
[58], being this process is highly sensitive to soil pH and moisture. 
Among the soil chemical factors, soil pH plays the most important 
role in Zn solubility in soil solution. In a pH range between 5.5 
and 7.0, Zn concentration in soil solution is decreased by 30 to 
45-fold for each unit increase in soil pH, thus increasing a risk 
for development of Zn deficiency in plants [59]. Increasing soil 
pH stimulates adsorption of Zn to soil constituents and reduces 
the desorption of the adsorbed Zn. At pH 5.0 the concentration of 
Zn2+ in soil solution is sufficiently high, about 6.5mg kg−1. When 
soil pH increased from 5 to 8, concentration of soil solution Zn2+ 
is reduced 1,000 times and becomes approx. 0.007mg kg−1. Thus, 
an increase in soil pH is associated with strong decreases in the 
concentrations of Zn in plant tissues [60,61].

The role of soil moisture is very critical for an adequate Zn 
diffusion to plant roots in soils with low Zn availability [61,62], 
whereas the soil organic matter plays a critical role in solubility 
and transport of Zn to plant roots [61,63-65]. Accordingly, the 
pool of readily available Zn to plant roots may be extremely low 
in soils with high pH and reduced levels of organic matter and 
soil moisture. 
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