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Introduction 
Deficit irrigation provides a means of reducing water 

consumption while minimizing adverse effects on yield [1]. 
Furthermore, they found that severe soil water deficit (SWD) 
decreased grain yield of winter wheat, while slight SWD in the 
growth stage from spring green up to grain-filling did not reduce 
grain yield or water use efficiency.

Drought, being the most important environmental stress, 
severely impairs plant growth and development, limits plant 
production and the performance of crop plants, more than any 
other environmental factor [2]. Plant experiences, drought 
stress either when the water supply to roots becomes difficult or 
when the transpiration rate becomes very high. Available water 
resources for successful crop production have been decreasing 
in recent years. Furthermore, in view of various climatic change 
models scientists suggested that in many regions of world, crop 
losses due to increasing water shortage will further aggravate its 
impacts [3].

For instance, an accumulation of Glu has been reported in the 
wheat grains under salinity [4]. This accumulation of Glu could  
have been caused by both, the activation of biosynthesis from Glu  
and the inactivation of Glu degradation [5]. 

 
Numerous studies have demonstrated that the composition of 
fatty acids can be altered in response to drought, with the extent 
of those changes depending upon the plant species, organ or 
severity of the stress [6, 7]. Dornbos & Mullen [8] reported that 
drought stress can increase stearic acid and decrease oleic acid. 
However, the increase or decrease depended on the severity of 
drought [9]. So far, few works have been done on the effect of 
environmental factors such as drought on fatty acid composition 
of wheat grains.

Glycine betaine (GB) is an amino acid derivative which 
is naturally synthesized in several plant species. However, 
many important crop species, like potato or tomato are unable 
to accumulate glycine betaine. Synthesis of glycine betaine 
is promoted by salt and drought stress as it functions as a 
compatible solute regulating the intracellular osmotic balance 
[10]. In addition, the positive effects of foliar spray of GB on 
yield and yield component in plants grown under water limited 
environment been reported in different crops such as rice [11] 
and common bean [10,12,13]. 

Salicylic acid (SA) has been reported to cause a multitude of 
effects on the morphology and physiology of plants [14] and to 
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induce a protective mechanism enhancing resistance to biotic 
and abiotic stresses [15]. Furthermore, Exogenous application 
of glycine betaine (GB) and salicylic acid (SA) has been found 
very effective in reducing the adverse effects of drought stress 
on sunflower plants [16]. 

 The present work was designed to evaluate the possible 
role of GB, SA or their interaction in modifying stress imposed 
by drought on grain biochemical aspects of two droughty wheat 
cultivars.

Material and Methods
Two wheat cultivars (Triticum aestivum L.) Gemmieza11 

(sensitive var.) and Sids-1 (tolerant var.), were used in this study. 
The variety Sids-1 is known to be more drought tolerant than 
Gemmieza11. 

Experimental design
Wheat grains of two winter wheat cultivars, (i.e. either 

sensitive or tolerant var.) were separately surface sterilized by 
soaking in 0.01% HgCl2 for 3 minutes, followed by thoroughly 
rinsing in sterile water. The sterilized grains from each variety 
were divided into two sets (≈500g per set for each var.). Grains 
of the 1st and 2nd sets were separately soaked in distilled water 
or salicylic acid (0.05M), respectively. In 20 November 2005, 
grains of each set were planted in plastic pots (fifteen grains per 
pot; 25cm width X 30cm height) filled with 6kg mixture of soil 
(clay and sand=2:1v/v). The pots were kept in a greenhouse, 
and the plants were subjected to natural day/ night conditions 
(minimum/maximum air temperature and relative humidity 
were; 29.2/33.2 °C and 63/68%, respectively). Irrigation to field 
capacity was carried out when soil water content had fallen to 
60% of its initial value. Twenty days after planting, the plants 
were thinned to five uniform seedlings per pot. 

Drought stress regimes
On the day 65 (at the beginning of heading) after planting 

the pots of the 1st set was allocated to four groups (20 pots per 
each group) as follow: control (cont.), water stress (WS), glycine 
betaine control (GB.), glycine betaine+water stress (GB+WS). 
The 2nd set group was allocated as follow: salicylic acid control 
(SA), salicylic acid+water stress (SA+WS), control glycine 
betaine+salicylic acid (GB+SA) and glycine betaine+salicylic 
acid+water stress (GB+SA+WS). For glycine betaine (10mm) 
treatment, the plants were sprayed by glycine betaine 48hrs 
before starting the stress period and weekly during the stress 
period. Water deficit was imposed by withholding water at the 
reproductive stage for 30 days within two periods: on the day 
65 from planting (heading stage) and the day 80 from planting 
(anthesis stage).

Each drought pot received 500ml water at the end of 1st 
stress period. At the end of stress periods, re-watering to the 
field capacity was carried out. The un-drought (control) plants 
were irrigated to the field capacity during the stress period, and 
all plants were left to grow until grain maturation under normal 

irrigation with tap water. At the bud stage, 20 days from planting, 
(i.e., tillering stage) and before heading (i.e., at ear emergence) 
the plants received 35kg N ha-1 as urea and 35kg P ha-1 as 
potassium dihydrogen phosphate as fertilizers. At harvest date 
(after complete maturation of grains), samples were taken from 
different treatments for the following estimation (triplicates for 
biochemical analyses and ten samples for grains biomass).

Determination of carbohydrates
Total soluble sugars and sucrose were extracted and 

determined using modifications of the procedures of Riazi et 
al. [17]. Glucose contents were estimated using the 0-toluidine 
procedure of Riazi et al. [17]. Polysaccharides were determined by 
the method of Thayermanavan & Sadasivam [18]. Determination 
of protein. The protein content of fresh plant materials was 
determined calorimetrically as described by Lowry et al. [19].

Determination of amino acids
All free amino acids were extracted with ethanol and then 

hydrolyzed with 6N HCl for 24 hrs according to the Sempio & Raggi 
[20]. The extracted amino acids were then measured using a LKB 
alpha high performance amino acid analyzer (LKB Biochrom. 
LKD England). Retention time and area were determined using 
Hewlett Packard 3390 recording integrator. Concentration of 
each amino acid GM/16GM nitrogen was calculated by special 
designed program. 

Fatty Acids Analysis 

Lipid extraction
The method of lipids extraction was adopted by Neumann 

(1995). Methylation of fatty acids for gas-liquid chromatography 
analysis. The method used in this investigation was essentially 
that adopted by Sink et al. (1964). The fatty acids were converted 
to methyl esters by refluxing for 2 hours in a conical flask 
containing 0.5g of oil (crude liquid extract the wheat flag leaf), 
25ml methyl alcohol and 0.5ml concentrated H2SO4. The mixture 
was cooled and extracted with diethyl ether several times using a 
separating funnel. The combined ether extracts were thoroughly 
washed several times with distilled water till the washing gave 
no acidic reaction with Litmus paper and become free from any 
traces of sulphuric acid. Fatty acids extract were dried using 
anhydrous sodium sulphate, filtered and the ether was removed 
by distillation on a warm water bath under vacuum in CO2 gas 
atmosphere, till the last traces of solvent were removed. The 
sample was cooled in a desiccator and fatty acids methyl ester 
was taken for GLC injection.

Gas Liquid Chromatography (GLC)

One µL of fatty acid methyl ester was injected into internal 
diameter column packed with 20% diethylene glycol succinate 
(DEGS) on chromorb 60-80 mesh by using Shimadzu (model: 
Shimadzu GC/MS- Qp5050A).

Determination of some mineral ions

The extracts of the experimental plants were analyzed 
for the cations: Na+, Ca+2 and Mg+2 measured by flam emission 
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spectrophotometery [21] whereas anions Cl-chlorides were 
determined by the AgNO3 titration method as described by 
Hansen & Munns [22]. 

Determination of phosphorus
The procedure adopted for extraction of the different 

phosphorus compounds were essentially those described by 
Barker & Mapson [23] and determined by method described by 
Humphries [24]. 

Statistical analysis
The main effect of factors (watering regime, used chemicals, 

growth stages and wheat cultivar) and interaction (watering 
regime, both used chemicals, growth stages and wheat type) 
were evaluated by general linear model (two way ANOVA) using 
SPSS program. 

Results and Discussion 
Generally, the grain fresh and dry masses, polysaccharides, 

total carbohydrates and total protein are decreased in response 

to water stress in both two wheat cultivars (Table 1 & 2). 
These results showed that, water withholding occurred during 
grain filling particularly at the 2nd stress period (at an thesis) 
might cause the following events: 1-led to an increase in ABA 
levels in flag leaves which in turn induced stomata closure and 
consequently decreased photosynthetic activity in flag leaves 
(the main source of photo-assimilates towards developing 
grains). This effect may result in a decrease in the grain biomass, 
2-water stress decreased the leaf area by inducing leaf rolling 
particularly in susceptible cultivar and this may decrease the dry 
matter production that translocation towards developing grains, 
3-water stress may stimulate the early senescence in wheat 
leaves particularly in susceptible cultivar which also affected the 
translocation of the photo-assimilates from leaves (particularly 
flag leaf) which represents the main export source towards the 
main import sink (developing grain) [12,13]. Bearing in mind 
the conclusion of Egeli et al. [25] that the accumulation of dry 
matter by grains requires the production of assimilates in the 
leaves, their translocation to the fruit, movement into the storage 
organs of seed, and the synthesis of materials to be stored.  

Table 1: Effect of glycine betaine, salicylic acid and their interaction on grain biomass and carbohydrate content of yielded grains of droughted 
wheat cultivars.

Wheat 
Cultivar

Parameter

Treatment
Grain Biomass (Mg Grain-1) Carbohydrates Content (Mg G1- D Wt)

Grain Fresh 
Mass

Grain Dry 
Mass Glucose Sucrose Total Soluble 

Sugar Polysa-Charides Total Carbohy-Drates

Sensitive

Cont 53.2 47 2.77 13.81 18.61 724.7 741.1

WS 44.2 40.3 3.48 18.24 25.76 530.2 552

GB 55 50.5 2.94 14.4 20.17 733.4 750.1

GB+WS 53.8 47.3 3.95 20.93 27.12 676.7 700.6

SA 55.9 50.1 3.02 14.77 20.93 752.5 769.9

SA+WS 50.7 47.8 3.91 22.13 29.81 686.2 711.6

GB+SA 59.2 54.4 3.15 14.99 21.37 759.6 777.7

GB+SA+WS 56.5 52.7 4.49 22.53 31.93 702.1 729.5

LSD 0.05 3.2 2.25 0.35 3.2 1.7 7.6 9.6

Tolarent

Cont. 53.5 47.7 2.4 11.31 16.4 750.3 768.9

WS 45.6 41.6 2.94 15.52 21.83 645.1 670.9

GB 56 51.7 2.58 11.76 16.7 769.2 789.3

GB+ WS 53.9 50.3 3.17 17.49 23.88 716.5 743.7

SA 58.3 53.1 2.77 12.48 17.43 763.5 784.4

SA+ WS 56.5 51.3 3.27 18.13 25.44 704.5 734.3

GB+SA 64.6 60.9 2.86 12.76 18.15 783.6 805

GB +SA+WS 61.7 58.3 3.3 19.86 27.4 641.4 673.3

LSD at P≤ 0.05 3 3 0.22 2.8 1.5 11.81 13.02

The above-mentioned results are in accord with those 
obtained by Sankar et al. [26]. Water deficits decreased both 
individual grain weight and grain yield. Nitrogen content per 
grain was quite high and similar for all treatments, and nitrogen 
percentage increased when stress was severe enough to reduce 
starch accumulation. This confirms that starch accumulation 
is more sensitive to post-anthesis stress than nitrogen 
accumulation.

Application of GB, SA or their interaction appeared to mitigate 
the deleterious effects of water stress on grain biomass of the 
two wheat cultivars. The repairing effect of SA may be attributed 
to the fact that SA reduces the rate of transpiration from leaves 
[27], which could possibly lead to the accumulation of excessive 
water, thus resulting consequently in an increase in grain fresh 
mass. Furthermore, GB application may act in the same manner 
as SA in inducing drastic reduction in the rate of transpiration. 
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The results obtained from diurnal changes in transpiration rate 
make this postulation decisive [13].

The results indicated that, soluble sugars are accumulated in 
response to water stress in both wheat cultivars. On the other 
hand, water stress induced massive decrease in polysaccharides 
content in yielded grains of both wheat cultivars. This may 
probably due to the fact that water stress stimulates the 
degradation of polysaccharides and at the same time increases 
the dark respiration during which a part of soluble sugars was 
consumed as a respiratory substrate. The other part of soluble 
sugars may explain the massive increase in total soluble sugars 
occurred within the developing grains as a result of water stress. 
From another point of view, water stress decreased the pigment 
concentration in wheat leaves [12] which results in inhibition of 
photosynthetic activity, in turn it leads to less accumulation of 
carbohydrates in mature leaves and consequently may decrease 
the rate of transport of carbohydrates from leaves to the 
developing grains, where there is a good relationship between 
source (leaves) and sink (grain) in cereal plants. Furthermore, the 
noticed decrease in polysaccharides of wheat grains as a result 
of water stress could be explained on the fact that, water stress 
impaired the utilization of carbohydrates during the vegetative 
growth and reduced the area of conductive canals (mainly phloem 

and xylem), so reduction in the translocation of the assimilates 
toward the developed grains might have occurred [13]. In accord 
with these results, several physiological studies suggested that 
under stress conditions nonstructural carbohydrates (sucrose, 
hexoses, and sugar alcohols) accumulate although to varying 
degree in different plant species. A strong correlation between 
sugar accumulations and osmotic stress tolerance has been 
widely reported, including transgenic experiments [28]. 

Phosphorus content (organic, inorganic and total) in wheat 
grains increased due to water stress application. El-Tayeb [29] 
recorded that phosphorus increased in barley plants due to 
salinity. In addition, application of GB, SA or their interaction 
caused additional accumulation in phosphorus content in both 
wheat cultivars yielded grains (Table 2). Water stress stimulates 
the accumulation of both calcium and sodium content but 
decreased the magnesium and chloride content in the yielded 
grains of the two wheat cultivars. This increase in calcium 
and sodium levels may result from transportation of these 
elements from root to shoot through the transpiration stream 
to the developing grains. In addition, application of GB, SA or 
interaction seemed to induce additional increase in ionic content 
(calcium, sodium, magnesium and chloride) of the developed 
grains (Table 2).

Table 2: Effect of glycine betaine, salicylic acid and their interaction on total protein, phosphorous and ionic content of yielded grains of 
droughted wheat cultivars.

Wheat 
Cultivar

Parameter

Treatment
Total Protien 

(Mg G-1)

Phosphorus Content

Inorganic 
Phosph.

Organic 
Phosph.

Total 
Phosph. Ca+2 Mg+2 Cl- Na+1

Sensitive

Cont 98.9 0.05 0.45 0.5 1.54 11.2 1.25 1.8

WS 75.6 0.07 0.48 0.55 1.79 9.1 0.5 2.1

GB 120.5 0.06 0.5 0.56 1.88 11.3 1.5 1.9

GB+WS 100.5 0.1 0.61 0.71 1.85 10.4 1 2.2

SA 117.1 0.07 0.51 0.59 1.72 11.9 1.75 1.95

SA+WS 101.6 0.11 0.66 0.77 1.89 10.2 1.25 2.3

GB+SA 128.7 0.08 0.59 0.67 1.75 12.1 1.85 1.98

GB+SA+WS 105.3 0.12 0.68 0.8 1.96 10.5 1.25 2.4

LSD 0.05 2.73 0.01 0.02 0.01 0.35 1.2 0.35 0.17

Tolerant

Cont. 102.3 0.07 0.45 0.52 1.53 11.3 1.3 1.9

WS 94 0.11 0.47 0.58 1.78 10 0.75 2.1

GB 128.4 0.12 0.47 0.59 1.69 11.4 1.75 1.98

GB+WS 108.9 0.15 0.58 0.74 1.95 10.5 0.95 2.25

SA 125.9 0.13 0.49 0.63 1.68 11.7 1.9 1.97

SA+WS 106.3 0.17 0.62 0.79 1.9 10.7 1 2.24

GB+SA 135.5 0.17 0.53 0.69 1.76 12.3 1.95 1.99

GB+SA+WS 114 0.27 0.57 0.85 2.14 11 1 2.26

LSD at 
p≤0.05 3.64 0.01 0.02 0.02 0.16 0.91 0.36 0.31

Under water stress, protein content of the developed grains 
was significantly decreased in both wheat cultivars. The decrease 
in protein contents in yielded grains was more pronounced in 

the sensitive cultivar than the tolerant one under drought, this 
may probably be due to less transport of protein from source 
(flag leaf) to the sink (grain). In support, water stress induced 
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remarkable decrease in soluble protein in flag leaf at heading and 
anthesis[12]. The decrease in protein content in yielded grains as 
a result of drought stress was alleviated by the application of GB, 
SA or their interaction. In connection with these results, Mäetak 
el al. 2000 found increased protein in tomato plants under 
drought or salinity by means of foliar-applied GB. In addition, 
similar results are obtained by El-Tayeb [29]. 

In this investigation, water stress induced a massive increase 
in total amino acids detected in the harvested grains of the two 

wheat cultivars (Table 3 & 4). This may result from the enhanced 
production of amino acids as a result of increased proteolytic 
activities which may occur in response to the changes in osmotic 
adjustment of their cellu-lar contents [30]. The accumulation of 
free amino acids under stress at all the growth stages indicates 
the possibility of their involvement in osmotic adjustment Yadav 
et al. 2005. The amino acid content has been shown to increase 
under drought conditions in Abelmoschus esculentus [26]. 

Table 3: Effec t of glycine betaine, salicylic acid and their interaction on amino acids content (mg/100g f wt) in the developed grains of sensitive 
wheat cultivar.

Treatment 

Parameter
Cont WS GB GB+WS SA SA+WS GB+ SA GB LSD at P≤0.05

Glutamic 8.25 8.95 8.62 10.17 8.43 9.54 8.87 10.66 0.32

Aspartic 6.12 7.71 6.94 8.51 6.47 8.24 6.66 8.75 1.32

Leucine 5.11 5.64 5.46 6.7 5.31 6.32 5.44 6.57 0.35

Tyrosine 3.26 5.15 4.88 6.44 4.23 5.83 4.65 6.21 1.23

Alanine 2.64 3.32 3.17 5.11 3.01 4.26 3.72 6.25 1.12

Isoleucine 2.55 3.15 2.95 4.01 2.53 3.42 2.81 3.73 0.63

Threonine 2.12 3.13 3.65 4.21 2.35 3.86 3.41 4.15 0.75

Serine 2.02 2.77 2.56 3.72 2.11 3.05 2.48 3.25 1.06

Proline 1.85 2.69 2.13 3.19 1.96 2.54 2.25 3.38 0.68

Arginine 1.36 2.06 1.78 2.65 1.53 2.14 1.96 2.72 0.58

Valine 1.12 2.03 2.15 2.41 1.65 1.87 1.77 2.23 0.45

Glycine 0.79 1.27 1.11 1.45 1.05 1.34 1.25 1.88 0.47

Histidine 0.72 0.97 0.83 1.05 0.76 1.04 0.86 1.12 0.17

Methionine 0.65 0.73 0.69 0.86 0.67 0.77 0.71 0.89 0.06

Pheynl 
alanine 0.63 0.89 0.76 1.16 0.68 0.92 0.72 1.11 0.19

Cysteine 0.53 0.62 0.57 0.78 0.55 0.66 0.55 0.73 0.04

Iysine 0.47 0.68 0.52 0.76 0.49 0.72 0.65 0.95 0.13

Total FAA 38.56 49.58 46.92 60.48 42.07 54.23 46.84 61.79 9.19

Ammonia 1.26 1.58 1.44 1.76 1.35 1.64 1.51 1.82 0.22

Table 4:  Effect of glycine betaine, salicylic acid and their interaction on amino acids content (mg/100g f wt) in the developed grains of tolerant 
wheat cultivar.

Treatment

Parameter
Cont WS GB GB+WS SA SA+WS GB+SA GB +SA+WS LSD at P≤0.05

Glutamic 7.16 8.46 7.54 9.16 7.38 8.75 7.78 9.48 0.84

Aspartic 5.32 6.54 5.95 7.38 5.44 6.85 6.03 8.14 1.05

Leucine 4.31 5.43 5.02 6.51 4.67 6.13 4.89 6.37 0.83

Tyrosine 2.43 3.55 2.73 4.99 2.56 3.95 2.7 4.54 1.32

Alanine 2.13 2.78 2.66 3.46 2.35 2.98 3.45 4.28 0.35

Isoleucine 2.04 2.67 2.84 3.59 2.33 2.92 2.63 3.24 0.74

Threonine 1.67 2.07 2.32 3.49 1.85 2.85 2.12 3.27 1.24

Proline 1.58 2.24 1.75 3.03 1.64 2.73 1.89 3.45 0.58

Serine 1.45 2.03 1.63 2.72 1.53 2.21 1.61 2.53 0.42

Valine 0.86 1.47 1.19 1.86 0.93 1.62 1.11 1.68 0.46

Glycine 0.66 0.98 0.87 1.23 0.72 1.11 0.95 1.39 0.21
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Histidine 0.68 0.85 0.77 0.96 0.71 0.89 0.82 1.03 0.14

Arginine 0.62 0.89 0.72 1.39 0.68 1.14 0.78 1.57 1.05

Iysine 0.52 0.76 0.63 0.89 0.59 0.84 0.69 0.98 0.18

Pheynl alanine 0.47 0.68 0.54 0.87 0.49 0.75 0.52 0.84 0.12

Methionine 0.45 0.49 0.47 0.53 0.46 0.51 0.47 0.55 0.03

Cysteine 0.37 0.46 0.42 0.57 0.38 0.48 0.41 0.56 0.06

Total FAA 32.36 41.9 37.64 52.07 34.35 46.23 38.45 53.36 9.57

Ammonia 0.92 1.25 1.08 1.55 0.97 1.46 1.11 1.68 0.17

The obtained results indicated that glutamic acid was the 
most abundant amino acid in the yielded grains of the control 
and treated plants. These results are in a good agreement with 
those obtained by Caputo & Barneix [31]. They found that, the 
amino acid composition of phloem sap is different in different 
species, in barley, Glu accounts for approximately 50% of the total 
amino acids, while Asp accounts for roughly 20% and in wheat, 
Glu amounted to 30% of the total amino acids, and Asp to 20%, 
with these proportions changing with plant age. Also, in spinach, 
Glu was the most abundant amino acid, accounting for 39.1%, 
followed by Asp (14.7%) and Glu (10.1%) [32] and Glu was also 
the dominating amino acid in the phloem of Beta vulgaris L. [33]. 
For instance, an accumulation of Glu has been reported in the 
wheat grains under salinity [4]. This accumulation of Glu could 
have been caused by both, the activation of biosynthesis from Glu 
and the inactivation of Glu degradation [5]. 

Water stress induced an accumulation in proline 
concentration in harvested grains in both wheat cultivars. 
Increased proline in the grain of stressed wheat plants may help 
to overcome any further stress conditions. Proline accumulates 
under stressed conditions supplies energy for growth and 
survival and thereby helps the plant to tolerate stress [34]. 
Treatments with GB, SA or their interaction induced remarkable 
increases in amino acids detected in the harvested grains of both 
wheat cultivars. This was in agreement with El-Tayeb [35] with 
sunflower plants treated with SA under Cu- stress conditions. 
Also, Hussein et al. [36] studied the effect of salicylic acid and 
salinity on growth of maize plants. They found that all amino 
acid concentrations are lowered by salinity except for proline 
and glycine. All determinate amino acid concentrations (except 
methionine) are increased with the application of salicylic 
acid (200ppm). On the other hand, methionine was negatively 
responded which slightly lowered. These chemicals may reduce 
proline oxidase and resulted in proline accumulation which acts 
as an osmolyte as well as scavenger.

Variation in fatty acids composition is most likely caused 
by environmental factors, these include salt and drought stress 
(Tables 5-8). According to Mikami & Murata [37] tolerance 
of plants to salt and drought is strongly dependent on the 
inheritance of fatty acids levels. Perusal of the data cleared 
that in response to water stress, the pattern of changes in 
total saturated fatty acids (TSFA) is vice versa to that in total 
unsaturated fatty acids (TUFA). As compared to control plants, 

the increment recorded in TSFA in response to water stress was 
accompanied with a noticeable reduction in TUFA in yielded 
grains of droughted wheat cultivars. As water stress resulted in 
a marked increase in the concentration of each saturated fatty 
acids, there was a simultaneous decrease in the concentration 
of each unsaturated fatty acids in yielded grains of droughted 
wheat cultivars. Moreover, a clear trend of induction in TSFA/
TUFA with water stress was observed. Comparing cultivars, Sids-
1 proved to be more tolerant than Gemmieza-11 where more 
increment in TSFA and more reduction in TUFA, MUFA as well 
as PUFA were observed in Sids-1. These results were in accord 
with those obtained by Taarit et al. [38] in Salvia officinalis leaves 
under water stress. Moreover, Xu and Beardall [39] stated that in 
a Dunaliella sp with increasing water stress level, the proportion 
of TSFA increased while PUFA decreased.

In connection, Nam et al. [40] reported that withholding 
irrigation led to an increment in the levels of stearic acid, linoleic 
acid, linolenic acid. By contrast, the values for oleic acid and 
behenic acid were reduced by this water shortage in brown 
rice. Moreover, Javed et al. [41] stated that, Amongst saturated 
fatty acid (palmitic and stearic acid) in sunflower, palmitic acid 
concentration has been noted to be increases in less water 
availability and stearic acid concentration lowers under drought 
while, water stress lowers the level of oleic acid and raises the 
linoleic in Different Safflower varieties.

 At the same time, the recorded decline in the amount of 
TUFA as a response of wheat plants to stress circumstances 
would be advantageous in terms of fatty acids reserve for growth. 
Moreover, the advantage of having saturated fatty acid is that 
the yield of ATP molecules during complete oxidation is higher 
than unsaturated fatty acids [42]. The data showed that drought 
decreased the degree of fatty acids unsaturation in yielded grains 
of both drought wheat cultivars with greater reduction in Sids-1 
than Gemmieza 11. This fact could be considered as one of the 
aspect of wheat adaptation to drought stress since some plants 
could be protected against the oxidative effects of water stress 
through restructuring membranes with less polyunsaturated 
fatty acids as indicated by Francois & Kleiman [43]. Also, this low 
unsaturation degree limited the membrane fluidity [43] and so 
restricted its permeability to Na+ and Cl- ions especially in Sids-
1 as concluded from our results. Hence, Sids-1 proved to be more 
tolerant than Gemmieza-11.
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Table 5: Effect of salicylic acid, glycine betaine and their interaction on saturated fatty acids (µg g-1 d wt) of yielded grains of droughted sensitive 
wheat cultivar.

Wheat Cultivar Sensitive

Treatment Parameter Cont WS SA SA+WS GB GB+WS SA+GB SA+GB+WS LSD at p≤ 0.05

Saturated Fatty 
(µg g-1 dwt)

Caprylic acid (C8) - - - - - - - 11.2 0.49

Capric acid (C10) - - - - - - - 16.8 0.122

Lauric acid (C12) - 12.2 - 38.9 - 37.1 18.6 204.6 0.816

Myristic acid (C14) 8.9 17.4 31.7 170.2 29.7 51.2 97.2 363 1.14

acid (C15) 
Pentadecanoic - 21.7 10.7 236 7.1 36.6 17.3 307.4 1.06

Palmitic acid  (C16) 21.7 41.8 38.2 59.3 32.5 53.7 44.7 416.7 0.816

Heptadecanoic (C17) - 16.9 - - - - 69.4 268.7 0.415

Stearic acid (C18) - - - 28.9 - - - 52.1 0.545

Arachidic acid (C20) 70.2 111.3 90.8 178.8 81.2 138.5 109.4 337.2 1.08

Behenic acid (C22) - - - 7.4 - - - 41.2 0.612

Total saturated fatty acids (TSFA) (µg 
g-1 d wt) 100.8 231.1 180.3 750.3 150.5 342.7 349.4 2427.5 5.83

Table 6: Effect of salicylic acid, glycine betaine and their interaction on saturated fatty acids (µg g-1 d wt) of yielded grains of droughted tolerant 
wheat cultivar.

Wheat Cultivar Tolerant

Treatment Parameter Cont WS SA SA+WS GB GB+WS SA+GB SA+GB+WS LSD at P≤0.05

Saturated fatty 
(µg g-1 dwt)

Caprylic acid(C8) - - - 32.1 - 31.2 - 40.7 0.85

Capric acid(C10) - 17.8 - 60.03 - 48.9 37.4 61.6 1.04

Lauric acid(C12) 12.1 53.5 17.5 113.2 14.6 101.3 118.9 168.5 0.878

Tridecanoic acid (C13) - - - 38.9 - 28.7 26.1 51.8 0.855

Myristic acid(C14) 71.9 131.2 392.7 627.4 100.4 125.8 212.7 718.9 2.1

acid (C15) Pentadecanoic - 20.4 28.2 36.9 22.9 34.7 27.1 40.9 0.85

Palmitic acid (C16) 128.7 153.8 214.5 216.2 191.3 200.2 289.2 323.7 1.03

Heptadecanoic(C17) - 30.9 28.2 36.9 22.9 34.7 27.1 40.9 0.769

Stearic acid(C18) 48.2 53.8 73.1 113.5 54.2 97.3 110.7 130.1 1.19

Arachidic acid(C20) 7.9 20.1 14.1 32.3 11.1 28.2 - 42.7 1.17

Behenic acid(C22) - - - - - - - 21.9 0.061

Total saturated fatty acids (TSFA) (µg g-1 
d wt) 268.8 481.5 768.3 1307.4 417.4 731 849 1641.7 5.09

Table 7: Effect of salicylic acid, glycine betaine and their interaction on unsaturated fatty acids (µg g-1 d wt) of yielded grains of droughted 
sensitive wheat cultivar.

Wheat Cultivar Sensitive

Treatment Parameter Cont WS SA SA+WS GB GB+WS SA+GB SA+GB+WS LSD at P≤ 
0.05

Fatty D 1 Wt

Palmitoleic acid 
(C16:1) - - 10.1 - 12.8 - 8.1 - 0.788

Oleic acid (C18:1) 172.9 108.2 117.3 91.2 167.1 96.8 101.3 82.4 1.14

Linoleic acid 
(C18:2) (PUFA) 83.1 73.4 72.8 63.1 79.7 69.4 68.1 60.5 1.15

Mono-unsaturated fatty acids (MUFA)(µg g-1 
dwt) 172.9 108.2 127.4 91.2 179.9 96.8 109.4 82.4 1.73

Total unsaturated fatty acids (TUFA) (µg g-1 
dwt) 255.6 181.6 200.2 154.3 259.6 166.2 177.5 142.9 2.59

TSFA / TUFA ratio 0.394 1.27 0.902 4.86 0.58 2.06 1.69 16.99 0.033
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Table 8: Effect of salicylic acid, glycine betaine and their interaction on unsaturated fatty acids (µg g-1 d wt) of yielded grains of droughted 
tolerant wheat cultivar.

Wheat cultivar Tolerant

Treatment

Cont WS SA SA+ WS GB
GB+

WS
SA+ GB SA+ 

GB+
SA+ GB+

WS
LSD at 
p≤0.05Parameter

Unsaturated 
fatty acids(µg 

g-1 d wt)

Palmitoleic 
acid (C16:1) 64.8 10.4 58.1 8.8 61.7 9.9 41.5 7.4 0.857

Oleic acid

(C18:1)
85.1 19.4 82.9 12.2 84.47 14.6 80.3 11.3 1.15

Linoleic 
acid (C18:2)  

(PUFA)
68.7 8.8 63.2 5.9 65.4 6.8 61.2 4.5 0.880

Mono-
unsaturated 
fatty acids          

(MUFA) (µg g-1 
d wt)

149.9 29.8 141 21 146.17 24.5 121.8 18.7 1.53

Total 
unsaturated 
fatty acids 

(TUFA) (µg g-1 
d wt)

218.6 38.6 204.2 26.9 211.57 31.3 183 23.2 1.66

TSFA / TUFA 
ratio 1.23 12.47 3.76 48.65 1.97 23.36 4.64 70.82 1.88

The relative compositional changes in fatty acids induced 
by drought resulted in increased saturated/unsaturated ratio 
particularly in tolerant cultivar. Similar increment in this ratio 
has been reported by many investigators [44,45] in different 
plant species in response to drought. Stressful environmental 
conditions not only lower the oil content it also alters the fatty 
acid composition [46]. Drought modified fatty acids composition 
and ultimately the food quality and it is considered to be very 
important in stress tolerance of plants [47]. Moreover extent 
of un saturation of fatty acids is correlated with potential of 
photosynthetic machinery to tolerate stress. Generally abiotic 
stress induces inactivation of PSII and PSI [48] and un saturation 
of fatty acids in membrane lipids shelter PSII and PSI as one of 
effective protective strategy. Where it affects dually; alleviating 
the damage to PSI and PSII and improving the healing of injury 
[49,50]. Fatty acid composition is generally affected by genotype 
(Knowles, 1988) and environmental conditions, particularly the 
level of unsaturation. Water stress causes a rise in oleic acid [51].

Salicylic acid and/or GB treatment induced a noticeable 
increase in TSFA and TSFA/ TUFA ratio as well as a noticeable 
reduction in TUFA in yielded grains of both stressed and 
unstressed wheat cultivars. Moreover, our results showed the 
appearance of new fatty acid (caprylic acid) in droughted wheat 
grains in response to SA and GB of both wheat cultivars and in 
droughted tolerant wheat cultivar treated with SA or GB alone. 
Also, the appearance of capric acid in droughted wheat grains in 
response to SA and GB of both wheat cultivars and in droughted 
tolerant wheat cultivar untreated or treated with SA or GB alone.

The disappearance of lauric acid in control sensitive wheat 
cultivar untreated or treated with SA or GB alone. Moreover, 
the disappearance of tridecanoic acid in control of both wheat 
cultivars and in droughted tolerant wheat cultivar untreated 
or treated with SA alone. In addition, results cleared the 
disappearance of pentadecanoic acid in yielded grains of control 
of both wheat cultivars and the disappearance of heptadecanoic 
acid in cont and water-stressed tolerant wheat cultivar treated 
with SA or GB alone.

Water-stress induced marked changes in fatty acids 
composition in yielded grains of both droughted wheat cultivars. 
Perusal of data cleared that drought increased TSFA concentration 
and decreased TUFA, MUFA as well as PUFA concentrations in 
yielded grains of both droughted wheat cultivars. By comparing 
the two cultivars, Gemmieza-11 showed more increment in TSFA 
and more reduction in TUFA, MUFA and PUFA. These results 
were in accord with those obtained by Taarit et al. [34] in Salvia 
officinalis leaves under water stress. Moreover, Xu and Beardall 
[39] stated that in a Dunaliella sp with increasing water stress 
level, the proportion of TSFA increased while PUFA decreased. 

At the same time, the recorded decline in the amount of TUFA 
as a response of wheat plants to stress circumstances would 
be advantageous in terms of fatty acids reserve for growth. 
Moreover, the advantage of having saturated fatty acid is that 
the yield of ATP molecules during complete oxidation is higher 
than unsaturated fatty acids [42]. The data showed that drought 
decreased the degree of fatty acids unsaturation in yielded 
grains of both droughted wheat cultivars with greater reduction 
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in Gemmieza-11than Sids-1. This fact could be considered as 
one of the aspect of wheat adaptation to drought stress since 
some plants could be protected against the oxidative effects 
of water stress through restructuring membranes with less 
polyunsaturated fatty acids as indicated by Francois and Kleiman 
[43]. Also, this low unsaturation degree limited the membrane 
fluidity [44] and so restricted its permeability to Na+ and Cl- ions 
especially in as concluded from our results. 

Note, the disappearance of lauric acid in control sensitive 
wheat cultivar untreated or treated with SA or GB alone. 
Moreover, the disappearance of tridecanoic acid in control of 
both wheat cultivars treated with tre alone and in droughted 
tolerant wheat cultivar untreated or treated with SA alone. In 
addition, Our results cleared the disappearance of pentadecanoic 
acid in yielded grains of control of both wheat cultivars and the 
disappearance of heptadecanoic acid in cont and water-stressed 
tolerant wheat cultivar treated with SA or GB alone and finally 
the appearance of stearic acid and behenic acid in yielded grains 
of droughted sensitive wheat cultivar treated with SA alone or 
SA and GB and the appearance of behenic acid in yielded grains 
of droughted tolerant wheat cultivar treated with SA and GB 
[52,53].

The most surprising results of the present study was that 
the interaction of SA and GB under water stress induced the 
appearance of caprylic acid and capric acid in yielded grains of 
sensitive wheat cultivars, while interaction of SA and GB under 
water stress induced the appearance of behenic acid in yielded 
grains of tolerant wheat cultivar. It was concluded application 
of GB, SA or their interaction induced additional increases 
in detected amino acids in kernels of the two wheat cultivars. 
The effect was more pronounced with GB+SA treatment. 
Furthermore, marked increase recorded in TSFA in response to 
water stress was accompanied with a noticeable reduction in 
TUFA in yielded grains of droughted wheat cultivars. Comparing 
cultivars, Sids-1 proved to be more tolerant than Gemmieza-
11where more increment in TSFA and more reduction in TUFA, 
MUFA as well as PUFA.
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