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Introduction 
Dairy farms like other animal farms have multiple threats 

against its sustainable operation such as significant pollution, 
food safety, water shortage and energy supply [1]. Current 
management of dairy manure is land application which have 
caused significant pollutions in water, air and soil [2]. High levels 
of nutrients such as nitrogen and phosphorus in manure are often 
released to environments and lead to significant contamination 
of various water resources, algal bloom occurrence and nitrate 
accumulation [3]. Release of untreated antibiotics and hormones 
from dairy manure have been increasing concerns in evolution 
of antibiotic resistant bacteria, endocrine disrupting activity 
and biotoxicity [4]. High level of nitrous oxide (N2O), one of 
major greenhouse gases, is emitted from soil amended with 
manure via nitrification and denitrification [1]. Unpleasant 
odors and methane are also released from manure during its 
land application [5,6]. In addition, manure applied to soil also 
increases soil acidity and degradation with significant reduction 
in diversity of soil microbial community ultimately decreasing 
agricultural productivity [2].

Composting can produce biofertilizers via microbial actions 
using dairy manure. However, it causes drastic loss of ammonia 
and development of odors during composting process [5,6]. 
Composting efficiency heavily relies on supply of oxygen for 
aerobic bacterial actions which significantly has limited its 
practical application for scale-up. Practical design of composting 
process needs to include appropriate aeration manners and  

 
reactor volume enough to support efficient aeration to microbes 
requiring high capital and operating costs for scale-up. 

Recently anaerobic digestion has been suggested to resolve 
manure disposal, energy recovery and greenhouse gas control. 
Anaerobic digestion (AD) is an attractive and widely used process 
that maximizes microbial metabolic abilities to convert organic 
fraction of wastes to biogas. Operation of closed bioreactors for 
AD can prevent emission of greenhouse gases and odors. A variety 
of research to date evaluated the effects of various manure Kafle 
& Chen [7], inoculum to substrate (ISR) [8], pretreatment [9], 
and temperature [10] on biogas production potential. However, 
the AD of manure often suffered from low methane yield and 
process instability. It was found the anaerobic digestion of dairy 
manure suffered low yield of methane, fluctuating performance, 
and significant amounts of undigested sludge after the digestion. 

Alternative to these technologies, thermal disposal of 
manure such as pyrolysis has been actively studies because 
the thermal processes are linked with on-site energy recovery, 
better water quality and production of biochar as a valuable 
product for agricultural and environmental applications [11,12]. 
Pyrolysis produces syngas, bio-oil and biochar at various yields 
under different conditions and feedstocks [13]. Pyrolysis could 
be used as an economical management of dairy manure to 
effectively dispose manure and reduce environmental problems 
associated with current manure management while producing 
valuable products such as biochar and bio-oil. Recently biochar 
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generated from pyrolysis of dairy manure has gained drastic 
interests due to its multiple benefits including increase of carbon 
sequestration, soil fertility, nutrient retention and water use 
efficiency and decrease of greenhouse gas emissions [11,12]. 
Biochar production yield is highly affected by feedstock (e.g. 
physical and chemical properties) and operating conditions 
(e.g. heat transfer, peak temperature, and residence time) [14]. 
For example, slow pyrolysis (minutes to hours) could produce 
30~50% bio-char, while fast pyrolysis (less than two seconds) 
produces a lower amount of bio-char (10~20%) with different 
properties.

 Up to date various biochars have been amended to soil for 
enhancing soil fertility, microbial community, and crop yields. 
Biochar from a wide range of sources has been promulgated as 
a soil amendment with positive effects on target plants [11,12]. 
For example, biochar in soil retained high moisture, nutrients 
and organic carbon which are essential compounds for plant 
growth while positively influencing on plant growth [15].

Recovery of phosphate on biochar has received increasing 
attention compared with other methods since biochar could be 
an effective and economical adsorbent for removal of phosphate 
from wastewater including dairy effluents [11]. Biochars from 
various feedstock and metal oxide-decorated biochars have 
shown promising performance for recovery of phosphate 
from wastewater mainly owing to effective interactions with 
phosphate via surface complexation and electrostatic interaction 
[16]. 

Recent reports on the recurrent detection of antibiotics 
residues from wastewater treatment facility effluents, soils, 
sediments, and aquatic environments have raised concerns 
for global public health [2]. The spread of these antibiotics 
can potentially lead to long-term adverse consequences on 
various ecosystems, including acute and chronic toxicity and 
propagation of antibiotic resistance in microbes. While current 
treatment methods for antibiotics in water have showed limited 
performances, removal of antibiotics in water using biochar has 
shown potential adsorption process since biochar from various 
feedstock at different pyrolytic conditions could provide effective 
functionality to capture antibiotics from wastewater and water 
[17]. Compared with the pristine biochar, the activated biochar 
has shown excellent adsorption of antibiotics in water. The 
biochar derived from various biomass was activated via physical 
(i.e., steam) and chemical (i.e., alkaline solutions, catalysts) 
methods in order to increase surface area and enhance porous 
structure. Current results indicated the activated biochar would 
be highly promising for removal of antibiotics in wastewater.

Conclusion
In overall, pyrolysis of dairy manure integrated with biochar 

technology would be highly effective and economical process 
for enhancing environmental sustainability at dairy farms while 

contributing to pollution in water, soil and air from dairy manure. 
Further studies will include systematic analysis (i.e., water-
energy-food nexus) of integrated pyrolysis-biochar process at 
dairy and other animal farms. 
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