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Abstract

This mini-review addresses occurrence, fate, mechanisms and possible remediation of antibiotic resistant genes in various environments. 
While antibiotic resistant genes are widely spread via multiple mechanisms, they often cause various diseases and significantly influence on 
human health. Wastewater treatment plants among various environmental matrices are considered as the main reservoir of antibiotic resistant 
genes. Current wastewater treatment technologies have revealed the limitations for effective treatment of antibiotic resistance at wastewater 
treatment plants. Thus, innovative and cost-effective means to reduce antibiotic resistance in wastewater needs to be developed.
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Introduction
Since the penicillin was discovered by Fleming [1], over 

250 different antibiotics are registered for use in human and 
veterinary medicine [2]. A lot of antibiotics including tetracyclines, 
quinolones and sulfonamides have been extensively used for 
the prevention and treatment of human and animal diseases 
[3]. However, low metabolic efficiencies of antibiotics have led 
to negative effects on human and animal health. As reported by 
Daughton & Ternes [4], most of the ingested antibiotics were 
excreted through urines and feces [5]. The undigested antibiotics 
were released to groundwater, wastewater, surface water and soil 
[6,7], while they often caused biotoxicity and antibiotic resistance 
in environments.

Unlike other pharmaceutical compounds, antibiotics are 
selectively act on bacteria via various mechanisms [8]. For 
example, antibiotics can inhibit the synthesis of cell wall and 
enzyme as well as protein [9]. However, some bacteria can be 
intrinsically resistant to one or multiple antibiotics through 
following molecular mechanisms [10]:

a.	 Changes in antibiotic targets by mutation.

b.	 Modification of targets.

c.	 Direct modification of antibiotics.

d.	 Prevention of access to target (e.g., efflux pump). All 
genes related to the antibiotic resistance are called “Antibiotic 
resistance genes (ARGs)”.

In ecosystems, ARGs can persist over many generations and 
enable to proliferate by not only vertical transfer but also horizontal  

 
gene transfer (HGT) such as conjugation and transduction [11]. 
Accordingly, more recent attention has focused on the fate of ARGs 
in environment due to it is undoubtedly threaten human and 
animal health directly [12,13]. For instance, in US, at least 23,000 
people die each year as a direct result of these antibiotic-resistant 
infections [14].

Several extensive literatures have reported the fate of ARGs 
in various environment matrices such as soil [15-18], ocean 
[19,20], river [21,22], and wastewater treatment plants (WWTPs) 
[23,24]. Among them, WWTPs is one of the largest reservoirs of 
ARGs and plays a significant role in the proliferation of ARGs to 
the environment [25-27]. Especially, environmental conditions 
including high microbial density and diversity in WWTPs may 
promote the HGT of ARGs with abundant mobile genetic elements 
[28]. Recent studies have revealed that the negative effects of 
effluent from WWTPs on received environments [29,30]. For this 
reason, tertiary process which may present an opportunity to 
minimize the expose of ARGs to the environment and ultimately 
reduce the risk of antibiotic-resistant infections in human [11,31].

 Several methods have been proposed for the removal of various 
antibiotics from water: biological treatment, advanced oxidation, 
membrane separation, and adsorption [32-38]. Unfortunately, 
these conventional water treatment processes do not remove 
antibiotics completely owing to the low concentrations and bio-
refractory properties of these contaminants [39,40]. Current 
biological treatments use the most economical means available, 
but they require a prolonged period of time to degrade antibiotics. 
Poor and inconsistent removal efficiencies of antibiotics are 
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another drawback [41,42]. Advanced oxidation methods (e.g., using 
ozone, H2O2/UV, Fenton oxidation [Fe/H2O2] and photocatalytic 
oxidation) remove emerging contaminant by utilizing strongly 
oxidizing hydroxy radicals [43-49]. Although these systems can 
achieve complete degradation of antibiotics [50,51], the short 
lifetime of the hydroxyl radicals necessitates the use of large 
amounts of oxidant to degrade trace levels of contaminants, 
which in turn degrades other organic compounds and generates 
metabolites of unknown toxicity [32,52]. Membrane separation is 
a promising technology for removal of micropollutants in water, 
however, it easily suffers from (bio)fouling problems which could 
result in unexpected interruption of contaminant treatment.

 Interestingly, DNA and RNA can be damage when it exposed 
to hydroxy radicals [53]. In this respect, ozone, chlorination and 
photocatalytic oxidation have been applied for the removal of 
ARGs [54]. In addition, some studies were also extended to UV 
irradiation for the removal of ARGs [3,55]. For instance, Zhuang 
et al. [56], reported that 2.98 -3.24, 2.48 - 2.74 and 1.68 – 2.55 
log reductions of ARGs were achieved by chlorination (dose of 
160mg/L with contact time of 120min), UV irradiation (UV dose 
of 12,477mJ/cm2) and ozonation (ozonation dose of 177.6mg/L), 
respectively. Although the ozone, chlorination and UV processes 
showed high removal of ARGs in a short time, they require 
high costs associated with energy and chemical consumption, 
maintenance and equipment. Recently, constructed wetlands 
(CWs) has been applied for the removal of antibiotics as well as 
ARGs due to its lower cost, easy operation and less maintenance 
requirements. In a positive sense, Huang et al. [57], reported that 
the removal efficiencies of ARGs in swine wastewater were greatly 
reduced with their removal efficiency ranging from 58 to 99.9% 
after vertical up-flow CWs treatment. However, increase in ARGs 
(e.g., tetracycline and sulfonamide resistance genes) was observed 
after horizontal and vertical subsurface flow CWs [58]. Thus, 
further study is needed to investigate the relationship between the 
operating conditions and ARGs in CWs as well as other treatment 
processes [59,60]. 

Discussion
A growing evidence indicate the importance of proper control 

of ARGs in WWTPs. However, there is still insufficient information 
available regarding the tertiary processes which can effectively 
remove the ARGs in effluent of WWTPs. More cost effective and 
efficient treatment processes for complete control of ARGs in 
wastewater should be developed along with detailed mechanisms 
and biotoxicity. In addition, long-term tracing of ARGs in the 
received environment (e.g., river and soil) after tertiary processes 
should be conducted since the regulation of level of ARGs is still 
questionable.

Conclusion
A lot of antibiotics have been released to various environments 

and led to develop antibiotic resistance causing serious health 
problems. Particularly, antibiotic resistant genes (ARGs) are 
widely spread over soil, water and air via multiple mechanisms 

while negatively influencing on human health. Since wastewater 
treatment plants are the major sink of ARGs, various remediation 
technologies such as ultraviolet light, ozone, chlorination and 
biological treatment have been applied to reduction of ARGs in 
wastewater. However, these technologies have shown limitations 
to effectively remove ARGs in wastewater. Therefore, innovative 
and cost-effective technologies for reduction of ARGs in 
wastewater need to be developed.
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