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Mini Review
Salinity is a major constraint to food production as the 

percentage of agricultural land that is affected by high salinity is 
continuously increasing throughout the world [1]. The extent of 
the problem is illustrated by the fact that one-third of the global 
arable land or half of the irrigated arable land is significantly 
affected by salinization [2]. Seed germination, seedling growth 
and vigor, vegetative growth, flowering and fruit set are adversely 
affected by salinity in many crops [3]. The tolerance to soil salinity 
varies greatly among plant species [4]. Among cereals, rice is highly 
salt-sensitive whereas barley is relatively salt-tolerant. Variation 
in salt tolerance is more pronounced in the dicotyledonous 
crops, wild plant species such as salt bush (Atriplex halimus, A. 
vesicaria) and several members of the Chenopodeaceae (Suaeda 
sp., Salicornia sp.) can grow at salinity levels far higher than that 
of seawater [2,4].

The SOS-signaling pathway mainly involved in salt tolerance 
in plants, consists of three main components including SOS1, 
SOS2 and SOS3. At SOS3 encodes a Ca2+-binding protein, which 
is sensitive to cytosolic Ca2+ level [5]. One of the consequences of 
salt stress is an increase in the cytoplasmic Ca2+ concentration. 
This increase in Ca2+ is sensed by SOS3, and it activates SOS2, 
which is a Ser/Thr protein kinase [6]. This SOS2-SOS3 complex 
ultimately phosphorylates and activates NHX1 and other 
transporters involved in vacuolar Na+ transport along with SOS1 
[7]. SOS1 is an electro-neutral Na+/H+ exchanger that is specific  

 
for Na+. GUS expression under AtSOS1 promoter exhibited a high 
promoter activity in root epidermal cells (particularly at root 
tip), and in stellar cells throughout the plant [8]. Atsos1 mutants 
are extremely salt-sensitive and have combined defects in Na+ 
extrusion and long-distance transport of Na+ from root to shoot 
[5,7]. Moreover, AtSOS1 mRNA is more abundant in roots than in 
shoots [8]. Thus, the suggested roles of SOS1 are: 

a. to pump Na+ back into the soil solution 

b. to decrease Na+ delivery to the shoot under salt exposure 
by its retrieval from xylem [9]. Similar functions for SOS1 has 
been proposed for Popular, Thellungiella salsuginea, wheat 
and rice [10-13]. 

The interaction between transcription factors and cis-
acting regulatory sequences in plant promoters is the key step 
involved in the altered regulation of gene expression under 
stress conditions [14]. It has been shown that differential gene 
expression contributes to the salt tolerance that are strongly 
and rapidly induced in response to abiotic stress [15]. WRKY 
transcription factors (TFs) have shown to bind to conserved DNA 
motifs in the promoter region involved in abiotic salt stress. In 
Arabidopsis, 72 members of WRKY family have been described 
[16]. Characteristic for these factors is their conserved WRKY DNA-
binding domain (W-box) in the promoter region of targeted genes. 
WRKY transcription factors regulate transcript levels of these 
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targeted genes upon binding to the W-box (TTGAC/CT) promoter 
element [15]. These TFs are defined by a conserved DNA binding 
domain of ~60 amino acids containing the nearly invariant stretch 

WRKYGQK followed by a unique zinc-finger pattern of Cys and His 
residues. WRKYs are sub-divided into three groups in Arabidopsis 
model plant based on WRKY domains [17]. 

Figure 1: Arabidopsis thaliana (A. thaliana), Cochlearia x hollandica (C. hollandica), Oryza sativa (O. sativa), Salicornia brachiate (S. 
brachiate), Salicornia dolichostachya (S. dolichostachya), Solanum lycopersicum (S. lycopersicum) and Triticum aestivum (T. aestivum) 
showing WRKY binding domain (TGAC) in SOS1 through their promoter alignment (multalin.toulouse.inra.fr/multalin/). Alignment shows 
six WRKY binding site in C. hollandica, four in O. sativa, two in T. aestivum, S. brachiate, S. dolichostachya and one in A. thaliana and S. 

lycopersicum respectively.

Three WRKY genes namely AtWRKY18, AtWRKY40 and 
AtWRKY60 showed to form a complex networking during salt 
and osmotic stress where AtWRKY40 antagonized the putative 
functions of AtWRKY18 and AtWRKY60 [18]. Thus, these WRKY TFs 
form a highly interacting regulatory network that modulates gene 
expression by acting as either transcription activator or repressor 
during stress response. Similarly ZmWRKY33 and TaWRKY71 
over expression in Arabidopsis were shown to be induced by salt 
stress [19-20]. Tomato plants containing 35S::SlWRKY3 showed 

reduced oxidative stress and proline contents with the expressions 
of SOS1 and SOS2 significantly induced in the transgenic plants 
[21]. Overexpression of GhWRKY34 also promoted expression 
of SOS1and SOS2 in transgenic plants through activating the 
SOS pathway with enhanced activity of Na+/H+ antiporter 
SOS1 [22]. As WKRYs are clearly involved in the abiotic stress 
tolerance, WRKY specific DNA binding domains in SOS1 promotor 
of various plant species that could be involved in salt tolerance 
were analyzed. The promoter region of the SOS1 from different 
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plants species for WKRYs binding domain; W-box were align using 
for Arabidopsis thaliana (A. thaliana), Cochlearia x hollandica 
(C. hollandica), Oryza sativa (O. sativa), Salicornia brachiate (S. 
brachiate), Salicornia dolichostachya (S. dolichostachya), Solanum 
lycopersicum (S. lycopersicum) and Triticum aestivum (T. aestivum) 
(Figure 1). WRKY cis-acting elements were found presents in the 
promoter regions of SOS1 using PlantCARE database. We found 
that O. sativa contains four W-box cis-elements and T. aestivum 
has two W-box cis-elements in their promoter region. A. thaliana 
and S. lycopersicum has one each W-box whereas S. brachiate and 
S. dolichostachya have two W-box cis elements in their promoter 
region. We speculate that as compared to wheat, rice is a more salt 
sensitive crop and therefore it has more W-box cis elements in the 
promoter of SOS1 to cope with salt stress. Salt tolerant plants as S. 
brachiate and S. dolichostachya have two W-box in SOS1 promoter. 
Considering these halophytes have small genome as compared 
to T. aestivum and O. sativa, we predict that the two WRKY 
TFs would significantly contribute to plant high salinity stress 
response by maintaining Na+/K+ ion potential and activating 
salt stress responsive genes [14-15]. WRKYs 25 and WRKY33 
were characterized using sos1-1, sos2-1 and sos3-1 mutants 
and their result suggested that the NaCl-induced expression of 
WRKY25 and WRKY33 is independent of SOS-signaling pathway 
[23]. It seems interesting as most of the salt stress responses in 
plants, involve typical SOS pathway. These results indicate that 
WRKY25/33 may have different downstream target gene to play 
their role in salt stress. The exceptional six cis-element WRKY 
motifs found in C. hollandica needs to be explored for their role in 
salinity tolerance. The transcriptional network of WRKY proteins 
forms an intricate signaling complex that plays an important role 
in plant response to cope with salt stress by excluding excessive 
Na+ and maintaining ion homeostasis. Since many members of 
the WRKY family act as important node of convergence for abiotic 
stress during transcriptional reprogramming, understanding the 
complex mechanism of WRKY TFs will pave way for improved 
agriculture production for important crop plants in salt tolerance. 
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