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Introduction

Arbuscular Mycorrhizal Fungi (AMF) are root bound 
symbiotes that are present in most terrestrial ecosystems. AMF 
belong to the Phylum Glomeromycotan, with more than 300 
species, which have suffered classification changes in the last 
10 years, currently endorsed as Phylum by Tedersoo [1]. The 
most recent classification of Glomeromycotan is based on the 
consensus of ribosomal RNA gene regions: 18S (SSU: Small Unit), 
ITS1-5.8S-ITS2 (internal transcribed spacers) and 28S (LSU: 
Large Subunit). Glomeromycotan fungi that produce globoid 
spores in unorganized sporocarps with a peridium probably 
have a worldwide distribution and they likely occur not only 
in undisturbed high-humidity habitats that are rich in organic 
matter, but also in highly degraded soils Jobim [2]. Taxonomic 
identification of AMF is traditionally based on spore morphology, a 
technique that requires a lot of time and considerable experience, 
and recently on DNA-based methods that are also expensive 
Crossay [3], however, DNA-based methods analyze the active 
composition of AMF populations within roots. Both should be 
considered as complementary. The AMF provides benefits to the 
host within them, facilitates the absorption of nutrients that are  
not bioavailable in the soil, mainly phosphorus, nitrogen, calcium, 
copper, zinc, magnesium, facilitates water intake, increases  

 
photosynthesis, and it also provides to the plant: resistance to 
biotic, abiotic stress and promote growth Kumar [4]. The plant 
gives it carbon in the form of amino acids, sugars in the form of 
hexoses, mainly glucose and polyols, which allow the maintenance 
of the microbiome of the mycorrhizosphere. Symbiotes store 
carbon from the plant in the form of vesicles (lipids) and use it as 
an energy source when the plant is not photosynthetically active 
Bach [5].

Tropical Ecosystems: mycorrhizal colonization in tropical 
ecosystems is affected by biotic and abiotic factors such as 
soil pH, water stress, light availability, ability to obtain carbon  
 
produced by plants, plant species, level of contamination, degree 
of soil disturbance, practices of agriculture and agrochemical 
application. Transfer of resources through shared fungal 
symbiotes, often called Common Mycorrhizal Networks (CMNs) 
could alter competitive ability and alter coexistence of plant 
species. It is possible that shared symbiotes can mediate plant-
plant interaction through changes in the density or composition 
of the symbiotic community Harley & Smith [6]. Mycorrhizal 
fungi are commonly the key determinant of plant population and 
community dynamics, with differences between mycorrhizal types 
Tedersoo [7]. Experimental data has shown that plants are able to 
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select certain fungi that supply most phosphates and reward them 
with more return carbohydrates Kiers [8]. On the other hand, 
different species may have different requirements, which could 
be the reason why different AMF dominate some forest species 
Haug [9]. An alternative explanation for the stability of mutualism 
is that both, plants, and fungi are able to detect the variation in 
resources supplied by their partner, allowing them to adjust to 
their own resources. As a type of “biological market”, there is a 
shift from the host to more cooperative species or changes in 
the competitive dynamics between fungi Kiers [8]. However, 
once colonization is established, plants cannot discriminate 
between fungal mixtures Kiers [8]. The same mycorrhizal fungal 
species do not deliver the same proportion of total phosphorus 
to different plant species Smith [10]. In AMF systems, fungal 
diversity increases plant diversity and vice versa, by providing 
species specific benefits and suppressing superior competitors 
Tedersoo [7]. Among the most abundant AMF are the genera 
Glomus and Acaulospora, which could indicate that they have the 
greatest ability to adapt to different environments, in addition to 
having tolerance to a wide pH range and producing numerous 
spores of small diameter. Glomus is more associated with grasses 
than forests, and Acaulospora and Scutellospora species may 
be more effective symbiotes for slow-growing plants, such as 
timber species in resource-limited environments Lovelock [11]. 
It is important to emphasize that the number of spores does not 
always correlate with the proportion of root length colonized by 
most AMF genera Merryweather & Fitter [12], mainly Acaulospora 
and Glomus Lovelock [11]. According to Lovelock [11], the causes 
of the different community structure could be that 

1) not all species in the community may be sporulating in the 
sample at the same time. 

2) sporulation may not proportionally represent all species of 
colonized roots. 

3) Tree species differ in growth rate and phenology. 

these species can differentially alter fertility and other 
physical and chemical characteristics of the soil. AMF have 
different colonization strategies, for example Glomus and 
Acaulospora colonize from all types of inocula. While Gigaspora 
and Scutellospora colonize mainly by spores and very limited by 
root fragments Klironomos [13]. Scutellospora does not produce 
vesicles because the infection can be by intra-radical or extra-
radical hyphae associated with root fragments and Gigaspora 
lacks runner hyphae. The vesicles can be infective segments of 
living or dead roots that can be an inoculum resource for the 
development of new roots Klironomos [13]; however, spores are 
the preferred method of propagation. Spore abundance may be the 
result of seasonal changes in inoculum potential or changes in the 
AMF community for which seeds are exposed to germinate which 
could impact recruitment. Variation in relative abundance of the 
few dominant species may be able to differentially alter seedling 
recruitment and growth Lovelock [11]. The niches of AMF species 
have been proposed to be a function of nutrient supply and plant 

growth rate, which is affected by environmental factors including 
light Lovelock [14]. HMAs secretes substances that influence the 
immediate environment (amino acids and complete proteins) that 
can have a direct selective effect on the microbial community of the 
rhizosphere. Furthermore, they can induce changes in the plant 
physiology, such as root exudation and carbohydrate metabolism 
of the plant that can indirectly affect the microbial community 
Aggagant [15].

The abundance and diversity of AMF decreases when having 
degraded soils and contamination produced by agricultural 
and agrochemical practices. Pesticide application and tillage 
are practices that impose strong ecological and evolutionary 
selection on AMF in ecosystems, decreasing diversity and 
affecting community composition Roy [16]. Previous studies have 
demonstrated the deleterious effects of conventional agriculture 
on the diversity of AMF and the selection of specific taxa of AMF 
Roy [16]. Progressively, there is a loss of AMF taxa throughout the 
years of conventional agriculture until less wealth is obtained in 
old agricultural crops. Available P: N stoichiometry is the most 
important predictor of AMF richness and community composition. 
The establishment of the native soil community is a limiting factor 
in restoring native plant diversity and composition. However, 
inoculation with native soil microbes has shown to increase 
the rate of establishment of native plants Bever [17]. AMF were 
previously considered to have asexual reproduction only. But the 
mycelium of AMF contains from hundreds to thousands of nuclei 
within a continuous cytoplasm, which is reported to have inter-
nuclear recombination in the dikaryotic life-stage, which varies 
in frequency between strains, despite the recombination of all 
nuclear genomes that have an average similarity of at least 99.8% 
Chen [18]. Therefore, AMF have a high plasticity to colonize a wide 
range of hosts and environments, by rapidly producing variable 
progeny, increasing their probability of producing offsping with 
different fitness than their parents Angelard [19]. Given the forced 
biotism of AMF, it makes the production of inoculants difficult, 
so the fungus requires metabolically active roots to complete its 
life cycle Souto [20]. Transformed root cultures are used to mass-
produce in vitro propagules of AMF. Mosse and Hepper [21] were 
the first to use the dual culture system for the growth of Glomus 
moseae in root crops in clover; monoaxenic crops are used in 
research, agriculture, and ecological restoration Kokkoris and 
Hart [22]. To develop an in vitro culture system for newly isolated 
AM fungi, a great deal of optimization needs to be performed, such 
as the selection of appropriate culture systems and symbiotic host 
root partners, as well as the determination of appropriate culture 
conditions Akbar and Widianto [23]. Because the plant (host shift) 
directs the genetics of the fungus since it has high nuclear activity. 
Nuclei migrate favoring one type nucleus or another (changes in 
the frequencies of type nuclei). Therefore, it is not convenient to 
only make monosporic cultures, since it claims to have a tax on, 
but information is lost (types of nuclei). It is important to have 
a shelter in the greenhouse with different monocot and dicot 
hosts to avoid selection (Fracchia personal communication). 
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The native consortium is a more feasible alternative to use as 
growth promoters in some species and may be a good option as 
biofertilizers under greenhouse conditions Quiñones-Aguilar [24]. 
AMF-based biofertilizers that can reduce production losses at 
both the nursery, and transplant and established plantation levels, 
since they increase the root surface and improve plant nutrition, 
which is reflected survival increments at the nursery level and 
transplantation, biomass production capacity and the quality of 
the final product, which, for the forest producer, it becomes more 
competitive and sustainable, with reductions in production costs 
and improved income. The mycorrhizal industry is very promising, 
challenges though remain and there are numerous bottlenecks 
to solve Vosatka [25]. Fundamental and applied research, 
farmers and industry must be conducted to provide consisting 
evidence for benefits of mycorrhiza in the real conditions of 
plant production Vosatka [25]. The in vitro propagation of 
AMF alters the morphology, genetics and functioning given the 
domestication of the strains. It is important to further examine 
the effects of domestication on AM fungi and predict how changes 
could highly affect the environment following inoculation with 
such strains Kokkoris and Hart [22]. Future research should 
determine whether region specific genomic recombination is 
linked to an isolated phenotype (eg, increased spore production, 
hyphal density, or mycorrhization rate) or to the suitability of 
economically important plants and crops Chen et al. [18]. Future 
progress prelude to the development of a future ‘ecological 
engineering of AMF and their associated microorganisms’ and its 
integration into modern plant breeding while taking care of the 
ecosystem services rendered by these valuable fungi  Wifp [26].
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