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Introduction

Figure 1: Rice Plant Disease Detection Algorithm provided by Prajapati et al., 2017.

Abstract 

Rice continues to be a primary food for the world’s population. Over its complex history, dating as far back as 8,000 B.C., there have been 
agricultural challenges, such as a variety of diseases. A consequence of disease in rice plants may lead to no harvest of grain; therefore, detecting 
disease early and providing expert remedies in a low-cost solution is highly desirable. In this article, we study a pragmatic approach for rice 
growers to leverage artificial intelligence solutions that reduce cost, increase speed, improve ease of use, and increase model performance over 
other solutions, thereby directly impacting field operations. Our method significantly improves upon prior methods by combining automated 
feature extraction for image data, exploring thousands of traditional machine learning configurations, defining a search space for hyper-
parameters, deploying a model using edge computing field usability, and suggesting remedies for rice growers. These results prove the validity of 
the proposed approach for rice disease detection and treatments.
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Rice supports more than half the world’s population as 
a primary food source [1]. The quality and quantity of rice 
production are significantly affected by rice disease. In general, 
identification of rice disease is made by visual observation of 
experienced producers in the field. This method requires constant 
surveillance from manual labor, which could be prohibitively 
expensive for large farms. However, with the advances in image 
processing and pattern recognition, a cost-effective method for 
disease identification is demonstrated. Advances in research 
continue on image processing and pattern recognition as a 
result of innovations with digital cameras and the increase in 
computational capacity. These tools have been effectively applied 
in many areas [2-5]. Prajapati et al., [6] developed a rice plant 
disease classification system after detailed experimental analysis 
of various techniques. Four techniques of background removal and 
three techniques of segmentation were empirically evaluated. It 
was proposed for accurate feature extraction, a centroid feeding-
based K-means clustering for segmentation of disease from a 
leaf image was necessary. The output from K-means clustering  
was enhanced by removing green pixels in the disease portion. 
Additional feature extraction was done under three categories: 
(1) color, (2) shape, and (3) texture. Ultimately, Support Vector 
Machines was chosen to perform a multiclass classifier (Figure 1).

Generally, rice growers identify plant disease through leaves as 
the first source. This can be detected automatically using comput-
er vision techniques. Until now, there have been several research-
ers who have conducted experiments with very little utility for 
rice farms. Considerations for farmers are cost, speed, ease of use, 
model performance, and direct impact on the field. There has been 
little attention to structuring a useful machine learning approach 
that is end-to-end in agriculture. Previous investigations have suc-
cessfully demonstrated the potential of deep learning algorithms 
in plant disease detection; yet, the cost associated with such archi-
tecture makes this unattainable for many rice growers. The length 
of training time required for such deep learning models has histor-
ically been lengthy, and specialty hardware is needed. Additional-
ly, the expertise necessary to maintain and optimize deep learning 
network hyper-parameters, such as (a) a comparison of activation 
functions like ReLU, Sigm, and Tanh, (b) learning rate, (c) quantity 

of neurons per layer, (d) quantity of hidden layers, and (e) dropout 
regularization remains unrealistic. Much of the research to date 
has been concerned with many pre-processing steps and augmen-
tation techniques for images to maximize model performance: (a) 
resize images, (b) denoise, (c) segmentation, and (d) morphology. 
In almost all the research, model performance has suffered from 
over-fitting, evidenced by high accuracy scores for training sets 
but significantly lower accuracy for validation sets.

Given that growers value more what is likely to happen in 
day-to-day utilization, the emphasis on a practical solution sug-
gests validation scores matter more than training scores. It will 
measure how well a solution performs. Lastly, there is little to no 
connection between identifying plant disease and what action rice 
farms should do next to experience the benefit of an algorithm 
detecting a plant disease early. In this work, we studied the ben-
efits of crafting an end-to-end solution for rice farmers using an 
automated machine learning platform with the aim of building a 
production-grade solution for agriculture that provides real-time 
decision support for rice farms. We combine several methods, 
namely, employing automated feature extraction for image data, 
exploring thousands of possible traditional machine learning con-
figurations, defining a search space for hyper-parameters, deploy-
ing a model built for edge computing for field usability, and sug-
gesting remedies for rice growers. This journal article comprises 
the following sections: methods and materials, results, discussion, 
and conclusion.

Methods and Materials

Data Acquisition

The dataset contains 120 jpeg images of disease-infected rice 
leaves. There are 3 classes of images based on the type of disease, 
each containing 40 images, and captured with a NIKON D90 dig-
ital SLR camera with 12.3 megapixels. This dataset was curated 
by the research team at the Department of Information Technol-
ogy, Dharmsinh Desai University, and is made publicly available. 
The authors gathered these leaves from a rice field in a village 
called Shertha in Gujarat, India, and in consultation with farmers, 
grouped the leaves into the aforementioned-diseases categories 
(Figure 2).

Figure 2: Three different rice disease classes contained in an image database.
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LogicPlum

As part of our research and analysis, we opted to use an A.I. in-
novation platform named LogicPlum. LogicPlum includes a library 
of proprietary and open-source model types, including linear, 
non-linear, and deep learning approaches [7]. While manual in-
terventions are possible during model development, in this study, 
the autonomous model builder was used; specifically, the platform 
was provided only with the original data images, and it decided 
appropriate configurations for machine learning models automat-
ically. Additionally, we chose two different autonomous run types 
within the LogicPlum platform. The first was Rapid mode, which 
is designed for model development under 5 minutes. We also 
used Intensive mode, which is intended for model development 
that allows for an undefined time but stops after several rounds 
of non-improvement with a given model evaluation metric. The 
software considers several families of algorithms and ranks them 
according to model performance based on the machine learning 
task. Lastly, a combination of base models is automatically evalu-
ated, and a subsequent composite model is tested for increased lift 
before a final solution.

Deep Learning for Computer Vision

Within research, education, and industry applications, the 
most essential step in a computer vision process is to extract fea-
tures from the images in a dataset. In this context, a feature is a 
tangible piece of information about a given image, such as color, 
line, edges, etc. A model needs to observe in order to learn the 
characteristics of a given image and thereby classify it correctly. 
Traditional machine learning approaches allow for several dif-
ferent feature extraction methods, which require manual feature 
selection and engineering. This process relies heavily on domain 
knowledge, both in computer vision and rice plant disease, to cre-
ate model inputs that make machine learning algorithms work 
better. To increase speed to market for the solution and eliminate 
the need for expertise in machine learning and plant pathology, 
we explored automatically extracting features using deep learn-
ing. The network automatically extracts features and learns their 
importance based on the output by applying weights to its connec-
tions. In practice, an individual feeds the raw image to the network 
and, as it passes through the network layers, the network identi-
fies patterns within the image to create features. 

Figure 3: Microarcitecural view: Organization of convolution filters in the fire module. We illustrate the convolution filters only.

Figure 4: Image featurizer becomes model inputs for ExtraTrees Classifier.

We use the SqueezeNet network to extract features from the 
images. SqueezeNet is a lightweight architecture that is extreme-
ly useful in low bandwidth scenarios like mobile platforms and 
has ImageNet accuracy similar to AlexNet, the convolution neural 
network that began the deep learning revolution in 2012 (Figure 
3). The first layer demonstrates that the first layer is a squeeze 

layer comprised of a 1×1 convolution that reduces the amount of 
channels, for example, from 64 to 16 in each image. The squeeze 
layer aims to compress the data so that the 3×3 convolution does 
not need to learn so many parameters. This is followed by an ex-
pand block with two parallel convolution layers: one with a 1×1 
kernel, the other with a 3×3 kernel. These convolution layers also 

http://dx.doi.org/10.19080/ARTOAJ.2021.25.556316


004

Agricultural Research & Technology: Open Access Journal 

How to cite this article: Damian Mingle, Amit Kumar. Classify Rice Disease Using Self-Optimizing Models and Edge Computing with Agricultural 
Implications. Agri Res & Tech: Open Access J. 2021; 25 (5): 556316. DOI: 10.19080/ARTOAJ.2021.25.556316

increase the quantity of channels again, from 16 back to 64. Their 
outputs are joined together so the output of this fire module has 
128 channels overall. SqueezeNet has 8 of these Fire modules in 
succession, sometimes with max-pooling layers between them. 

There are zero fully-connected layers. At the end of the process is 
a convolution layer that performs the classification, followed by 
the global average [8] (Figure 4).

Determined Architecture with Rapid Mode

Modeling with ExtraTrees

Figure 5: Stochastic Gradient Descent rice plant disease predictions become model inputs for Gaussian Naive Bayes Classifier.

ExtraTrees Classifier was selected as the top performer. This 
classifier fits many randomized decision trees on numerous 
sub-samples of the dataset and uses averaging to enhance the pre-
dictive accuracy and control over-fitting. ExtraTrees is considered 
a perturb-and-combine technique specifically designed for trees. 
Effectively this means that a diverse set of classifiers is designed 
by introducing randomness in the classifier construction. The pre-
diction of the collection of weak learners is given as the averaged 
prediction of the individual classifiers (Figure 5). 

Determined Architecture with Autonomous Mode

For a composite model to outperform base models, some sam-
ples must be better predicted by one model, and other samples 
by another model. Stacking is an ensemble learning technique to 
bring together multiple classification models via a meta-classifi-

er [9]. LogicPlum extends the standard stacking algorithm using 
cross-validation to arrange the input data for the level-2 classifier. 

In the usual stacking procedure, the first-level classifiers fit 
the same training set used to arrange the inputs for the level-2 
classifier, which may lead to overfitting. However, the LogicPlum 
approach uses the concept of cross-validation: the dataset is split 
into k-folds, and in k successive sequences, k-1 folds are used to fit 
the first level classifier. The first-level classifiers are then utilized 
on the remaining 1 subset that was not used for model fitting in 
each iteration in each round. The resulting predictions are then 
stacked and provided – as input data – to the second-level clas-
sifier. After the training of the StackedCVClassifier, the first-level 
classifiers are fit to the entire dataset, as illustrated in the figure 
below. More formally, the Stacking Cross-Validation algorithm can 
be summarized as follows: (Table 1)

Table 1: Algorithmic steps for a Cross-Validated Stacked classifier inspired by Wolpert, 1992.

Algorithm Stacking with K-fold Cross Validation

Input : Training data } ^{ , (1
mD x y xi i i R n ii y Y= ∈= ∈

Output : An ensemble classifier H
1 : Adopt cross-validation approach in preparing a training set for second-level classifier

2 : Randomly split D  into  equal-size subsets: { , , ...., }1 2D D D Dk=

3 : for 1k ← to K do

4 :  Step 1.1: Learn first-level classifiers

5 :  for 1t ← to T do

6 :  Learn a classifier hkt  form \D Dk  

7 :  end for

8 :  Step 1.2 Construct a training set for second-level classifier

9 :  for x Di k∈ do

10 :  Get a record 
'{ , }x yi i  where

' { ( ), ( ), ..., ( )}1 2x h x h x h xi i ii k k kt=
11 :  end for

12 : end for

13 : Step 2: Learn a second-level classifier
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14 : Learn a new classifier  from the collection of 
'{ , }x yi i

15 : Step 3: Re-learn first level classifiers

16 : for 1t ← to T do

17 :  Learn a classifier ht  based on D
18 : end for

19 : return 
'( ) ( ( ), ( ), ..., ( )1 2H x h h x h x h xT=

Modeling with Stochastic Gradient Descent

Figure 6: Flow diagram of Stacked Cross-Validation Algorithm.

This estimator applies regularized linear models with sto-
chastic gradient descent learning; the loss’s gradient is estimated 
each sample at a time. The model is revised along the way with a 
decreasing learning rate [10]. This implementation makes use of 
data represented as dense or sparse arrays of floating-point val-
ues for the features (Figure 6). The model it fits can be monitored 
with the loss parameter; by default, it fits a linear support vector 
machine. The regularizer is a consequence added to the loss func-
tion that shrinks model parameters in the direction of the zero 
vector using the squared Euclidean norm (L2), the absolute norm 
(L1), or a mixture of both (Elastic Net). Many hyperparameters 
were considered in optimizing for the Stochastic Gradient Descent 
Classifier. The constant that multiplies the regularization term, 
alpha, is set to 0.0001. In general, the higher the value, the stron-
ger the regularization. We did not compute the average Stochastic 

Gradient Descent weights across all updates and therefore did not 
store the results as coefficients. We did not set class weights, and 
thus, all classes are assigned to a weight of one. Early stopping was 
not engaged, forcing us to not terminate training when validation 
scores did not improve. The initial learning rate set was 1.0. We 
did not assume the data was already centered, and chose to es-
timate the intercept. We used a squared hinge loss function that 
is equivalent to Support Vector Classification, but is quadratically 
penalized. For the exponent for inverse scaling learning rate, we 
used a power_t =0.1. We set the maximum number of passes over 
the training data to be 1,000. The L1 ratio is defined with a range 
of 0 to 1, and we set it to 1.0. We used Elastic Net as the penal-
ty term, which brought sparsity to the model. The learning rate 
schedule used was inverse scaling,
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( ) 0
_

etat
power tt

η =

Where 0eta and _power tt  are hyperparameters chosen by 
LogicPlum. 

Modeling with Gaussian Naïve Bayes

We implemented the Gaussian Naïve Bayes algorithm for clas-
sification. The likelihood of the features is believed to be Gaussian:

2( )1
( | ) exp( )22 22

x uyip x yi
yy σπσ

−
= −

Where the parameters yσ  and  yµ  are estimated using max-
imum likelihood.

The classes’ prior probabilities were not specified as part of 
our experiment and therefore were not adjusted according to the 
data. It was determined that variable smoothing should be 1e-9, 
which was the most considerable variance of all features added to 
variances for calculation stability.

Connected to farmers for usability

Results

Evaluation Metrics

We use a ground-truth-based approach to compare the results 
of various machine learning models. Ground truth is a term used 
in multiple fields to refer to the information provided by direct 
observation instead of the information provided by inference. We 
understood the machine learning task to be a multiclass classi-
fication problem that could be realized in a binary classification 
model framework. 

The model results were compared concerning the ground 
truth as follows:

Given the definitions of terms within table 2, we can generate 
standard evaluation metrics for machine learning classification 
models: 

Table 2: Definition of terms.

Term Definition

True Positive (TP) Items where the true label is positive and whose class is correctly predicted to be positive.

False Positive (FP) Items where the true label is negative and whose class is incorrectly predicted to be positive.

False Negative (FN) Items where the true label is positive and whose class is incorrectly predicted to be negative.

True Negative (TN) Items where the true label is negative and whose class is correctly predicted to be negative.

Accuracy is defined as the number of items correctly identified 
as either true positive or true negative out of the total number of 
items. Mathematically described as, 

( )

( )

TP TN

TP TN FP FN

+

+ + +

Recall is defined as the number of items correctly identified as 
positive out of the total actual positives. Mathematically described 
as, 

( )

( )

TP

TP FN+

Precision is defined as the number of items correctly identi-
fied as positive out of the total items identified as positive. Mathe-
matically described as, 

( )

( )

TP

TP FP+

F1 score is defined as the harmonic average of precision and 
recall, measures the effectiveness of identification when just as 

much significance is given to recall as to precision. Mathematical-
ly, described as, 

(2 * )

( )

precision

precision Recall+

Macro Average computes the metric independently for each 
class then averages the results. Mathematically, described as, 

Pr Pr ... Pr1 2Pr k
macro k

+ + +
=

Weighted average weights are calculated by the frequency of a 
class. Mathematically, described as, 

#0#0 #01 2Pr ... Pr bsbs bs k
weighted macro kN N N= + + +−

LogicPlum randomly selected 30 images from each class and 
formed a training dataset of 90 images. The remaining 30 images 
were portioned as a test set. The data in both train and test con-
sisted of 513 features (Table 3).
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Table 3: Rapid results model (2 minutes).

Disease Type Precision Recall F1 Score Support

Bacteria Leaf Blight 0.875 1 0.933 14

Brown Spot 0.882 1 0.938 15

Leaf Smut 1 0.636 0.778 11

Accuracy     0.9 40

Macro Avg 0.919 0.879 0.883 40

Weighted Avg 0.912 0.9 0.892 40

Model Performance

Statistics

Our primary evaluation metric for model performance was ac-
curacy. We observed accuracy of 0.90 across all rice plant disease 
classifications on the Rapid model’s validation dataset. Recall, as 
it relates to Leaf Smut, is the lowest secondary evaluation metric 

for model performance. This measure aims to answer the ques-
tion, “What proportion of actual positives was identified correct-
ly?” In the context of the Intensive model, which was completed in 
60 minutes, we observed accuracy of 92.5% across all rice disease 
classes. However, the lowest secondary measure is recall as it re-
lates to Leaf Smut (Table 4).

Table 4: Intensive results model (60 minutes).

Disease Type Precision Recall F1 Score Support

Bacteria Leaf Blight 0.824 1 0.903 14

Brown Spot 1 0.933 0.966 15

Leaf Smut 1 0.818 0.9 11

Accuracy     0.925 40

Macro Avg 0.941 0.917 0.923 40

Weighted Avg 0.938 0.925 0.926 40

To completely evaluate the effectiveness of a model, we must 
examine both precision and recall. Precision and recall are often in 
tension. That is, improving precision typically reduces recall and 
vice versa. Thus, many machine learning practitioners rely on the 
F1 score, which combines the effects of both precision and recall. 
An F1 score is considered perfect if it reaches 1.0. When compar-

ing the F1 score from both the Rapid and Intensive mode, we can 
observe that the Intensive mode does significantly better at classi-
fying Leaf Smut than the Rapid mode, with a 15.68% increase. It is 
worth noting that while the Intensive mode is superior in almost 
every respect, it does show a percentage decrease of 3.21% when 
considering the F1 score for Bacterial Leaf Blight. 

Confusion Matrix

Below are the confusion matrices for both models.

Table 5: Confusion matrix for LogicPlum Rapid mode.
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Table 5 illustrates where the Rapid mode made incorrect pre-
dictions: Leaf Smut for the True Class should be 11, and instead 
we have 7. We incorrectly classified 4 Leaf Smut cases as Bacteri-
al Leaf Blight in two instances and Brown Spot in the remaining 
instances (Table 6). In the case of the Intensive mode, there was 

misclassification that occurs in two classes, Brown Spot and Leaf 
Smut. However, the total misclassification rate for Intensive was 
lower by 25% over Rapid mode. Additionally, Bacterial Leaf Blight 
offered new improvement, and Brown Spot created some minor 
confusion for the Intensive mode.

Table 6: Confusion matrix of LogicPlum Intensive mode.

Comparative Accuracy of Models

Our experiment was conducted in LogicPlum cloud and only 
leveraged a CPU configuration. As seen in Table 4, we achieve test 
accuracy of 90% with the Rapid results model, whereas with the 
Intensive results model, accuracy goes up to 92.5%. Barring one 
image, all the test images belonging to Bacteria Leaf Light and 
Brown Spot are correctly classified.

Discussion
Summary of conclusions:

This paper proposed two new approaches for detecting dis-
ease in rice plants, Rapid mode and Intensive mode, using a mea-
ger number of images for training a classifier. We provide an in-
depth analysis of our methods, which outperform the original 
paper results on the same dataset with significantly fewer ma-
chine learning techniques. Future work involves exploring the 
edge computing capabilities of these methods.

Relation to other results

We achieved 90.0% on the test dataset with Rapid mode, 
which builds the A.I. solution from data upload to prediction with-
in 2 minutes. Additionally, we achieved 92.5% accuracy on the test 
dataset, which has a training time that completes within 60 min-
utes. Both approaches increase detection accuracy for rice plant 
disease over the prior research, which achieved 73.33% accuracy 
on the dataset [6]. As it relates to model performance, the Rapid 
mode exhibits a 22.73% increase over the prior research, while 
the Intensive mode demonstrates a 26.14% percent increase. 
Furthermore, we reduced the number of technical steps taken by 
practitioners in the preceding study, from 11 steps to 5 steps in the 
case of Rapid mode, and 6 steps in the Intensive mode—a 54.54% 
and 45.45% decrease, respectively, over the prior research (Figure 
7).

Figure 7: Model performance by approach to identify bacterial leaf blight, brown spot, and leaf smut within rice plants.
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Prior methods

This paper evaluated four techniques of background removal 
by applying masks generated based on the following: (1) original 
image, (2) hue component values of the image in HSV color space, 
(3) value components of the image in HSV color space, and finally 
(4) saturation component values of the image in HSV color space. 
Three techniques of segmentation were utilized: (1) LAB color 
space based K-means clustering, (2) Otsu’s segmentation tech-
nique, and (3) HSV color space based K-means clustering. Using 
various features under three categories: color, texture, and shape, 
the authors extracted 88 features from the disease portion of a 
leaf image. Finally, the paper used Support Vector Machines with 
Gaussian kernel for multiclass classification of the leaf images.

Implications

Edge computing for smartphone users

Edge computing has the capability to address the concerns of 
bringing machine learning approaches to the farming fields. Spe-
cifically, edge computing deals with response time requirements, 
battery life consumption, bandwidth cost savings, and data safety 

and privacy. Edge computing is at the center of several IoT agricul-
tural applications, such as pest identification, safety traceability 
of farm products, unmanned agrarian machinery, agrarian tech-
nology promotion, and in this case, classifying diseases from the 
images of rice leaves purely because of its speed and efficiency 
compared to the cloud infrastructure. It offers a potentially tracta-
ble model for mainstreaming smart agriculture [11]. Agriculture 
IoT systems can make informed decisions in the field when using 
edge computing [12].

We propose an approach that allows for access to our A.I. 
solution without an internet connection in the field. Figure 8 (A) 
illustrates the process of a farmer in a field who needs access to 
rice plant disease classification via her smartphone and does not 
have access to a network connection. The farmer can make use of 
the classification algorithm as it is embedded on the phone. (B) 
demonstrates that the trained model is converted to a LogicPlum 
Lite file type, which is how the model becomes executable on a 
mobile phone device. Figure 8.C exemplifies the concept of return-
ing to a location that supplies network connection, and a transfer 
occurs. If an update exists, then an update is made available. 

Figure 8: Process makes rice plant disease detection available at the edge of the network and allows for intelligent updates when available.

Borrowing knowledge from plant experts

Making expert plant knowledge readily available to farmers in 
the field promises a meaningful impact. Edge computing allows 
farmers with a mobile app to capture the image of infected rice leaf 
and classify the disease, thereby greatly reducing the need for con-
sultation with plant pathologists, which can be a time-consuming 
process. Furthermore, once a condition is detected, appropriate 
expert measures can be applied with various management strate-
gies, namely preventive methods, cultural methods, and chemical 
methods (Figure 9). The Next Action Model is built on a concept of 
just-in-time learning, which meets farmers where they are instead 
of requiring structured education to form concept knowledge. The 
advent of our machine learning approach, coupled with edge com-
puting and remedies for specific management strategies of rice 

plant disease, shifts farming further into the 21st century. Many 
education areas have evolved into a self-paced process of finding 
information or learning skills exactly when and where they are 
needed, and farming is no different. Our approach offers flexible 
delivery of learning to farmers with an “anytime, anyplace” frame-
work. This approach allows farmers to independently access in-
formation from plant pathology databases in the context of what 
they observe within their environment. This approach is linked 
to the idea of lifelong learning, learner-driven learning, and proj-
ect-based learning. We have organized expert remedies for each of 
the three rice disease classes we analyzed: Rice Leaf Blight, Brow 
Spot, and Leaf Smut. According to Tamil Naud Agricultural Univer-
sity, each of these rice diseases has three management strategies 
categorized as preventive, cultural, and chemicall (Tables 8-14).
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Figure 9: Rice farmers can capture images of suspected rice disease and have an expert system classify the disease. Additionally, once the 
classification is made available, remedies for preventive, cultural, and chemical methods are presented in real-time.

Table 7: The contents of preventive methods for rice leaf blight were created by Tamil Nadu Agricultural University.

Methods Category Actions

Preventive – Rice Leaf Blight
 

Seed treatment with bleaching powder (100g/l) and zinc sulfate (2%) reduces bacterial blight.

Seed treatment - seed soaking for 8 hours in Agrimycin (0.025%) and wettable ceresan (0.05%) followed by hot 
water treatment for 30 min at 52-54oC

Seed soaking for 8 hours in ceresan (0.1%) and treat with Streptocyclin (3g in 1 liter)

Spray neem oil 3% or NSKE 5%

Spray fresh cow dung extract for the control of bacterial blight. Dissolve 20 g cow dung in one liter of water; allow 
to settle and sieve. Use supernatant liquid. (starting from the initial appearance of the disease and another at 

fortnightly interval)

Table 8: The contents of cultural methods for rice leaf blight were created by Tamil Nadu Agricultural University.

Methods Category Action

Cultural – Rice Leaf Blight
 
 
 

Grow Tolerant varieties (I.R. 20 I.R. 72,PONMANI , TKM 6).

Secure disease-free seed.

Grow nurseries preferably in isolated upland conditions.

Avoid clipping of seedlings during transplanting.

Balanced fertilization, avoid excess N – application.

Skip N - application at booting (if the disease is moderate).

Drain the field (except at the flowering stage of the crop).

Destruction of weeds and collateral hosts.

Avoid flow of water from affected fields.

Maintain proper plant spacing.

Table 9: The contents of chemical methods for rice leaf blight were created by Tamil Nadu Agricultural University.

Methods Category Action

Chemical – Rice Leaf Blight

Reduce bacterial leaf blight by seed treatment with bleaching powder (100g/l) and zinc sulfate (2%).

Seed treatment - seed soaking for 8 hours in Agrimycin (0.025%) and wettable ceresan (0.05%) followed by hot 
water treatment for 30 min at 52-54oC.

seed soaking for 8 hours in ceresan (0.1%) and treat with Streptocyclin (3g in 1 liter).

Spray Streptomycin sulphate + Tetracycline combination 300 g + Copper oxychloride 1.25kg/ha. If necessary 
repeat 15 days later.

Application of bleaching powder @ 5 kg/ha in the irrigation water is recommended in the kresek stage.

Foliar spray with copper fungicides alternatively with Strepto-cyclin (250 ppm) to check secondary spread.
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Table 10: The contents of preventive methods for rice brown smut were created by Tamil Nadu Agricultural University.

Methods Category Actions

Preventive – Rice Smut

Utilize disease-free seeds that are selected from a healthy crop.

Seed treatment with carbendazim 2.0g/kg of seeds.

Control insect pests.

Split application of nitrogen is recommended.

Removal and proper disposal of infected plant debris.

Table 11: The contents of cultural methods for rice smut spot were created by Tamil Nadu Agricultural University.

Methods Category Actions

Cultural Methods – Rice Smut

Among the cultural control, the destruction of straw and stubble from infected plants is recommended to reduce 
the disease.

Use varieties that are found to be resistant or tolerant against the disease in India.

Avoid field activities when the plants are wet.

Early planted crop has less smut balls than the late crop.

When harvesting, diseased plants should be removed and destroyed so that sclerotia does not fall in the field. 
This will reduce the primary inoculum for the next crop.

Field bunds and irrigation channels should be kept clean to eliminate alternate hosts.

Excess application of nitrogenous fertilizer should be avoided.

Regular monitoring of disease incidence during rabi season is very essential.

Proper destruction of straw and stubble.

Table 12: The contents of chemical methods for rice smut spot were created by Tamil Nadu Agricultural University.

Methods Category Actions

Chemical Methods – Rice Smut

Spraying either copper oxychloride at 2.5 g/liter or Propiconazole at 1.0 ml/liter at boot leaf and milky stages will 
help prevent the fungal infection.

Seed treatment with carbendazim 2.0g/kg of seeds.

At tillering and pre-flowering stages, spray Hexaconazole @ 1ml/lit or Chlorothalonil 2g/lit.

In areas where the disease may cause yield loss, applying captan, captafol, fentin hydroxide, and mancozeb can be 
inhibited by conidial germination.

At tillering and pre-flowering stages, spraying of carbendazim fungicide and copper base fungicide can effectively 
control the disease.

Table 13: The contents of preventive methods for rice brown spot were created by Tamil Nadu Agricultural University.

Methods Category Actions

Preventive – Rice Brown Spot

Seed treatment with Pseudomonas fluorescens @ 10g/kg of seed followed by seedling dip @ of 2.5 kg or products/
ha dissolved in 100 liters and dipping for 30 minutes.

seed soak/seed treatment with Captan or Thiram at 2.0g /kg of seed

Seed treatment with Agrosan or Ceresan 2.5 g/kg seed to ward off seedling blight stage

Since the fungus is seed transmitted, a hot water seed treatment (53-54°C) for 10-12 minutes may be effective be-
fore sowing. This treatment controls primary infection at the seedling stage. Presoaking the seed in cold water for 8 

hours increases effectivity of the treatment.
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Table 14: The contents of cultural methods for rice brown spot were created by Tamil Nadu Agricultural University.

Methods Category Actions

Cultural – Rice Brown Spot

As the disease is seed-borne, use disease-free seeds.

Removal of alternate & collateral hosts.

The use of resistant varieties is the most economical means of control.

Growing Resistant varieties like ADT 44,PY 4,CORH 1,CO 44,CAUVERY,BHAVANI,TPS 4 and Dhanu.

Providing proper nutrition for optimum plant growth and prevention of water stress seem to be the most important 
factors in controlling brown spot.

The disease is rarely observed in normally fertile rice soils.

Soils known to be low in plant-available silicon should be amended with calcium silicate slag before planting, and the 
field should be well irrigated to avoid water stress.

Data science knowledge

Our approach leverages an automated machine learning pro-
cess that allows for rapid experimentation on real-world prob-
lems. This approach covers the entire process from beginning to 
end, more specifically, from uploading the data to the deployment 
of a machine learning classifier, with little to no human interac-
tion. This approach has data science expertise built into the pro-
cess, offering guardrails for lay users of machine learning. In this 
approach, the emphasis is placed on the creative use of the tech-
nology rather than the details of a given algorithm. 

Effects of age, educational level, and adoption of farm-
ing practices

Children who were raised on family farms are familiar with 
the farming practices that have proven successful for their par-
ents. So, even when younger family members don’t make identical 
decisions to those of their parents, their decisions will continue 
to be informed by years spent under their parents’ guidance [13]. 
This is known as multi-generational farming, which often doesn’t 
involve technology in agriculture.

According to Moore’s law, computer processing speed doubles 
every 18 or so months, and a generation is generally understood 
to be between 20 and 30 years. This means that processing speeds 
may double 20 times during a given farming generation, allowing 
for more insight and actionable machine learning models (Kole-
va,2021). Although former generations may not have been raised 
with digital technology, such significant enhancements in machine 
learning model performance, along with edge computing, should 
encourage adoption within agriculture, requiring new behaviors 
and ways of thinking. We believe that just like rakes, hoes, and 
shovels are essential for today’s farmers, machine learning will be 
added to the basic set of farming tools in the 21st century. 

Digital farming techniques

Our approach is additive in the context of modern agricultural 
methods. Successfully delivering productive and sustainable ag-
ricultural systems worldwide will help form the foundations for 
overcoming food insecurity and hunger. Economic viability makes 

edge commuting one of the emerging technologies staged to 
transform the agricultural industry. With sensors, actuators, and 
real-time data-driven models, digitization can help us overcome 
some of the biggest challenges of our time [14]. Autonomous trac-
tors and robotic machinery, often known as Agribots, can run on 
autopilot, communicating with nearby sensors to acquire the nec-
essary data about the surrounding environment. The introduction 
of drones has shown great promise with agricultural implications. 
These unmanned aerial vehicles can help in various ways, such as 
monitoring livestock and crop growth, and increasing output with 
real-time insights. Additionally, the introduction of the 5G mobile 
network, which is designed to connect virtually everyone and ev-
erything together, including machines, objects, and devices, will 
further drive the adoption of digital farming techniques. 

Precision farming

Technology has become an imperative consideration for ev-
ery stakeholder involved in agriculture, starting from farmer to 
agronomist. Precision farming makes farming more accurate and 
controlled when it comes to growing crops and raising livestock. 
It can decide on and carry out the best technical intervention in 
the right place at the best possible moment. It makes it simpler 
to plan ahead of time and to act precisely in terms of space. A vi-
tal component of the precision farming management approach 
is the use of technology with its wide array of instruments, such 
as robotics, drones, variable rate technology, sensors, GPS-based 
soil sampling, telematics, and software. A balance must be found 
between precision farming, capable of determining the correct, 
limited scale of mediation at the right time and in the right place, 
and a preventive, systemic approach empowering a cultivated 
ecosystem to produce without the need for curative treatments. 
Digital technology will make it possible for targeted interventions, 
through data processing, forecasting and anticipating, simulating, 
and safeguarding [15].

Conclusion

The best prediction statistics were achieved with a Gauss-
ian Naïve Bayes stacked classifier that used Stochastic Gradient 
Descent Classifiers predictions as model inputs. The automated 
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model construction approach resulted in a validation set of 92.5% 
accuracy. Therefore, it can be recommended for use, with little to 
no involvement from a machine learning expert or trained plant 
pathologist. Our approach ranged from as much as 60 minutes in 
total time to 2 minutes. Since our method was automated com-
pared to a manually crafted process, it is faster loading the data, 
model construction, optimization, and deployment. This method 
is inexpensive compared to other methods, not only in time but in 
economic terms, as our method only uses CPU rather than GPU ar-
chitecture. Our approach cut the number of steps in half compared 
to prior methods and is also self-optimizing, permitting users of 
this approach to be hands-free. Additionally, our process does 
not end with the identification of rice plant disease. Instead, we 
combined management strategies for specific rice diseases from 
known plant experts using edge computing. This was chosen to in-
crease accessibility to the machine learning approach, and allows 
for our system to meet more farmers where they are and when 
they need it [16-20].
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