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Introduction 

As the world moves toward a carbon-neutral future, active 
forest management and planting of genetically improved material 
will play an essential part in the realization of this goal. Although 
deforestation contributes to net atmospheric emissions, the 
remaining forests are a net carbon sink. Between 2011-2015 
forests stored, on average, some 2.1 GT of CO2 annually, of which 
half was estimated to be due to net growth in planted forests [1]. 
Furthermore, biomass from wood has the advantage of possessing 
higher energy density when compared with non-woody biomass  

 
[2] Globally, conifers have long dominated production forestry 
in the northern hemisphere and are increasingly planted in the 
southern hemisphere. Norway spruce (Picea abies (L.) Karst) 
is northern and central Europe’s commercially most important 
species. It is also the most planted species in northern Europe 
[3]. The feasibility of automating Norway spruce’s SE plant 
production process has been demonstrated for scale up to 
industrial production [4] A vital step of the automation process 
is to characterize morphological parameters and link them to 
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Somatic embryogenesis (SE) can be a viable method for the clonal propagation of many economically significant forest trees, particularly 
coniferous trees like pines and spruces. However, large-scale production of SE plants requires automation to reduce manual labor and attain 
cost-efficiency. The most labor-intensive step of the SE process for SE plant production is selecting and harvesting mature embryos. Embryo 
maturation is not a synchronized process; selecting the most developed embryos capable of continuous development is necessary. However, 
there needs to be more research conducted on mapping morphological features to germination-competent mature somatic embryos. This paper 
lays down the preliminary work of employing machine learning techniques for classifying large volumes of images of mature somatic embryos 
processed using an automated SE processing system based on fluidics processing referred to as SE Fluidics system. The results show that machine 
learning could be an alternative classification methodology instead of the traditional manual morphology-based classification process based 
on image analysis. The paper discusses two popular image classification techniques, namely Convolution Neural Network (CNN) and Support 
Vector Machine (SVM), applying them to both binary (black and white) and grayscale images. It is observed that grayscale images provide better 
accuracy with the SVM technique and outperform morphology-based classification in terms of processing speed (17.6% faster) across the test 
envelope. On the other hand, CNN-based classification shows better processing speeds only at a lower number of convolution layers. Hence, the 
data scientist can optimally select the number of convolution layers to get the desired accuracy-processing speed combination. 

Keywords: SE Fluidics system; Image analysis; Somatic Embryogenesis; Machine learning; Embryo morphology 

Abbreviations: SE: Somatic Embryogenesis; CNN: Convolution Neural Network; SVM: Support Vector Machine; ML: Machine Learning; PEM: 
Pro Embryogenic Mass; BW: Black and White; SS: Stainless Steel; ReLU: Rectified Linear Unit; HOG: Histogram of Oriented Gradients

https://juniperpublishers.com/
http://juniperpublishers.com/artoaj/
http://dx.doi.org/10.19080/artoaj.2016.02.555590

http://dx.doi.org/10.19080/ARTOAJ.2024.28.556399


002

Agricultural Research & Technology: Open Access Journal 

How to cite this article:  P Chatterjee, A Weerasekara, U Egertsdotter, C Aidun. Machine Learning based Sorting of Somatic Embryos for In-Line 
processing in Automated SE Fluidics System. Agri Res& Tech: Open Access J. 2024; 28(1): 556399 DOI:10.19080/ARTOAJ.2024.28.556399

germination competent, mature somatic embryos [5]. There have 
been many publications in the agricultural domain involving the 
use of machine learning (ML) algorithms; in tissue culture, data-
driven approach has been adopted by numerous researchers to 
simulate and predict further growth and developmental processes 
under in-vitro conditions. A review article by Hesami et al. [6] 
documents the latest application of ML models used in plant cell 
and tissue culture. 

In the agriculture industry, image processing was introduced 
almost a decade ago to aid the sorting and classification of seeds 
for crop production [7,8]. Researchers have recently started 
implementing machine learning (ML) algorithms in somatic 
embryogenesis. (Mohsen et al.) [9] captured images in-vitro to 
measure the physical properties of embryogenic callus using 
artificial neural networks (ANN). Researchers have also used 
genetic algorithms ANN to predict and optimize the constituents 
in the culture medium used in tissue culture studies [10,11]. 
However, there needs to be more research exploring the viability 
of using ML algorithms as an alternative to morphological feature-
based sorting algorithms. The closest research data publicly 
available pertains to the classification of plant embryos via 
absorption, transmittance, and reflectance data processed from 
digital images [12] and is different from the techniques explored 
in this paper. Our group has previously demonstrated a method 
for distinguishing between mature embryos having a range of 
morphological properties such as length, width, and cotyledon 
count. This distinction could be used to track the potential of these 
embryos for plant formation [5]. This exercise has been possible 
because of the in-house developed SE Fluidics system [4], which 
can preprocess, image, and sort a high volume of somatic embryos 
in an automated fashion. In this paper, we use the available 
information on germination-competent embryos to investigate 

an alternative way of sorting the good embryos from bad and 
detecting the embryos’ orientation, using ML. We have used 
convolution neural network (CNN) and support vector machine 
(SVM) based ML techniques for classifying mature somatic 
embryos. This model will give the user another tool to segregate 
the mature somatic embryos and, when appropriately tuned 
(discussed later), achieve improved image processing speeds over 
morphology-based segregation. 

Methods 

The SE Fluidic system [4,13] provides an integrated and 
automated approach for processing the mature somatic embryos 
that are produced on a large scale in bioreactors or on solid media 
in a petri dish. This is achieved through a network of flow loops that 
serve as the conduit for the fluidic transportation medium carrying 
the mixture of mature embryos embedded in proembryogenic 
mass (PEM). The SE Fluidics system can be divided into three 
main inline subsections based on their significant functionalities, 
as shown in the schematic in Figure 1. The major subsystems 
are the extraction section, separation section and the deposition 
section. The extraction section is designed to allow the embryos-
PEM mixture to be introduced into the system within a sterile 
environment. The separator section is designed to segregate 
the embryos from (PEM) and sort the embryos according to a 
predefined morphology-based acceptance criterion. The good 
embryos are deposited on the deposition tray in the deposition 
section and the unwanted embryos are collected separately to be 
periodically removed from the flow loop. The deposition rate from 
a single deposition tube depends on the quality of the embryos and 
could vary from 1 to 0.25 Hz. Through multiplexing the deposition 
rate increases linearly.

Figure 1: Schematic of the SE fluidics system showing the extraction, separation, and the deposition sections.
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A schematic of the SE Fluidics system is provided in Figure 1, 
showing the various subsystems in a continuous sterile flow loop. 
The imaging takes place within a glass tube at the red dashed 
rectangular region. The unwanted PEM is separated from the 
mature somatic embryos within the stainless steel (SS) separator 
tank and the aqueous-suspended embryos descending from the 
separator tank are regulated to sequentially (one-by-one) enter 
the horizontal portion of the glass tube and are pushed towards 
the imaging section where they are imaged. The captured image 
is processed in-line using morphology-based image processing 
operations, to be classified as accepted or rejected along with 
orientation detection. We see that the SE Fluidics system provides 
an automated platform for imaging embryos at an industrial scale 
that allows the creation of an image library of all the embryos. 

This paper utilizes the images from this library to explore two 
different machine learning algorithms and the results have been 
compared with morphologically driven image analysis. A database 
of labelled images has been carefully assembled from the image 
library generated by the SE Fluidics system. The images have been 
captured using two Prosilica GC1290 cameras fitted with 25mm 
fixed focal length lens from Edmund Optics Inc. The images were 

saved in a monochrome format with an image size of 501 X 400 
pixels having a resolution of approximately 70 pixels/mm. The 
glass tube is backed with black colored paper and a LED light 
source illuminates the scene from the front. The captured images 
are processed on an Optiplex 990 computer running on core i7 
processor, 16 GB of RAM, solid state hard drive and a Gigabyte 
GeForce GT 1030 2GB Low Profile graphics card. 

Firstly, an image of the scene is taken with the camera without 
the embryos and is used as a reference to subtract the light 
intensity from the images containing the embryos. A couple of 
sample images are shown for reference in Figure 2. The images are 
then processed by the morphological image processing algorithm 
and are classified into two categories and labelled into two 
folders as accepted and rejected. The accepted embryo images are 
further classified into right or left orientations. The orientation is 
determined based on the orientation of the cotyledon side with 
respect to the flow direction (in this case, flow is from left to right 
of the image) of the embryo-suspended medium within the glass 
tube. For example, if the suspended embryo is moving from left to 
right of the image and the cotyledon is on the left side of the image, 
the orientation is considered left (Figure 2a).

Figure 2: Some of the sample images of size 501 x 400 pixels are shown here for reference. (a) shows some of the unwanted 
reflection from the edges of the glass tube and (b) shows an approximate boundary of the glass tube.

Image pre-processing 

The captured images are processed before being evaluated by 
the morphological evaluation program. Some unwanted artifacts, 
such as bright spots emanating from the reflection against the 
glass walls, as illustrated in Figure 2, and air bubbles are removed. 
Figure 3 shows the different pre-processing steps involved. First, 
the embryo is detected by finding the most significant area above 

a given threshold intensity. The red rectangular bounding box 
illustrated in Figure 3(b) shows the detected embryo in the image. 
The detected embryo is cropped along the green-colored box, 
ensuring that the region of the embryo near its envelope, closely 
encapsulated by the red box, is not discarded by the subsequent 
cropping operation. The cropping operation results in differently 
sized images and is shown in Figure 3(c). As shown in Figure 
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3(d), an image mask is created, slightly larger in shape compared 
to the detected embryo. This mask is applied to the grayscale 
image such that everything outside the mask region is forced to 
be completely black (i.e., a pixel value of 0). This step removes all 
unwanted background noise, such as air bubbles, glass reflections, 
and unwanted floating particulate matter. The masked grayscale 
image shown in Figure 3(e), is binarized to obtain a black and 
white (BW) image. These BW images provide information about 
the embryo envelope, shown in Figure 3(f), and are used for all 
morphology-based evaluations. Two additional processing steps 
are required for ML-based classification, as discussed next. As 
discussed before, different-sized embryos result in differently 
sized cropped images that are not usable for training classifiers. 

The first step is to ensure image uniformity in pixel width and 
height by padding the edges of smaller images with zeros. The 
grayscale image obtained from Figure 3(e) is first padded with 
zeros along its edges to ensure image pixel height and width 
consistency across all images. A resizing operation follows this 
to obtain the grayscale image shown in Figure 3(g). Resizing the 
padded photos to 50% of their original pixel dimensions reduces 
computational time while training the networks and during real-
time image classification. The additional steps required from 
the morphology-based evaluation to ML classification result in 
increased processing times, which have been captured in this 
analysis and presented in the next section. 

Figure 3: Steps involved in image pre-processing: (a) image obtained from camera, (b) object detection and framing, (c) detected image 
cropping and (d) object mask to be applied to cropped image in (c).

Figure 4: After image pre-processing there are two more steps for morphology-based embryo classification: (e) mask applied to 
cropped grayscale image and, (f) binarized (BW) image of step (e). For ML based classifications in grayscale the additional step is 
(g) padding of image obtained in step (e). For ML based classification in BW image in step (g) is binarized to get image (h).
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Morphology-based classification 

A MATLAB code is developed that determines the 
morphological features of the embryos such as, cotyledon width 
(𝑤𝑐𝑜𝑡𝑦), embryo length (𝑙), number of cotyledons (𝑛𝑐𝑜𝑡𝑦), and 
the ratio of embryo width to length (𝑤𝑐𝑜𝑡𝑦/𝑙). These critical 
dimensions are shown in Figure 5. Additionally, the algorithm 
determines the cotyledon’s orientation, which could be a useful 
parameter if the user is concerned about the orientation with 
which the cotyledon is deposited on the deposition tray. The 
image is rotated to align it with the flow, and then morphological 
measurements are carried out. For the batch of photos processed 
here, some of the selection criterion is based on the publication of 
[11] where the cotyledon width to length ratio, 0.5 < 𝑤𝑐𝑜𝑡𝑦/𝑙 <  0.7, 
𝑛𝑐𝑜𝑡𝑦 ≥ 2, and 𝑙 > 1.43 𝑚𝑚 have been chosen to be the criterion for 
accepting the embryos. The algorithm is flexible to adapt to the 
user’s morphological selection criteria. A series of three images is 
illustrated in Figure 6, where the morphological classification is 
shown in action starting with the images in Figure 3(f). The time 
elapsed between opening the image for processing and the last 
classification step, where the image is classified either in ‘Accept 
Left’, ‘Accept Right’ or ‘Reject’ categories, is recorded for each 
processed image. For BW images, the processing time is the sum 
of the time taken from step (a) of Figure 3 to step (f) of Figure 3 
(or step (e) of Figure 3 for grayscale images). This time includes 
the entirety of pre-processing steps (𝑡𝑝𝑟𝑒) plus the processing 
time of applying mask to cropped image Figure 3(c) (𝑡𝑚𝑎𝑠𝑘), 
followed by the morphological algorithm that classifies the image 
(𝑡𝑚𝑐). Mathematically, the total processing time required for 
morphology-based classification, 𝑡𝑡𝑜𝑡, 𝑚 = 𝑡𝑝𝑟𝑒 + 𝑡𝑚𝑎𝑠𝑘 + 𝑡𝑚𝑐. 

ML-based classification 

Typically for image classification, CNN primarily involves 

convolution layers for feature extraction, pooling layers for feature 
compression and fully connected layers for image classification. 
Multiple bundles of such layers can be used in succession to learn 
features with increasing levels of complexity. In this study, a multi-
layer CNN is designed with each layer containing a convolution, 
batch normalization, rectified linear unit (ReLU) and pooling 
layers. For every convolution layer we have used a fixed kernel size 
of [5, 5] with a gradually incrementing number of filters for each 
successive layer (8, 16, 32 and 64 channels). The pooling layers 
are used to reduce the spatial dimensions of the feature maps, 
thus reducing the computational effort of the neural network. In 
our numerical experiments, we have used a fixed maxpool matrix 
size of [3,3] across all the layers with a step size of vertical and 
horizontal traversal (stride) of 2 pixels. The convolution layer sets 
are followed by a fully connected layer and a SoftMax layer [14] 
which categorizes the images into three categories – ‘accept left’, 
‘accept right’ and ‘reject’. 

For the SVM algorithm, the feature extraction has been 
performed by extracting histogram of oriented gradients (HOG) 
[14] using MATLAB’s inbuilt function ‘extractHOGFeatures’. The 
gradient of the image intensity is first calculated both in x and 
y directions, followed by image discretization into small blocks 
of size 4X4 pixels. For each block a 9-point (if no. of bins is = 9) 
histogram is calculated using 9 bins. The orientation angle of 0-180 
degrees is equally spaced for each bin and the gradient magnitude 
corresponding to its gradient angle is stored in the appropriate bin 
– creating a histogram for the block. This procedure is repeated for 
all the blocks within the given image. In our simulations, we have 
varied the no. of bins from 9 to 36 (9, 18, 27, 36), to capture the 
finer gradient variations occurring within the images. An extracted 
feature on a sample image using HOG is shown in Figure 8.

Figure 5: A selected embryo image shows the morphological parameters such as total length of the embryo, the cotyledon width, and the 
cotyledons (4 count). The image also shows that the cotyledon is not oriented in the same direction as flow hence labelled as ‘left oriented’.
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Figure 6: The BW image obtained from step (f) of Figure 3 is used to classify the embryo based on morphological features. 

Figure 7: A schematic showing a two-layer CNN used in this paper. The green boxed region is referred here as a convolution layer set 
and is repeated when the CNN has more than 2 layers.

Both the CNN and the SVM networks were trained with 240 
images in each of the three labeled image categories, namely 
‘Accept Left’, ‘Accept Right’ and ‘Reject’. To understand the effect 
of increasing hidden layers, on the accuracy and the processing 
times of the images, networks were trained with the following 
different - 2, 3, 4, 5, 6 and 7 layers. In each trained network, 70% 
of the images were reserved for training and 30% for validation. 
The images were randomly selected into the training and 
validation pools. Hence, every time a network is trained with the 
same number of layers, a slightly different accuracy is achieved 
because of the randomization of the selected images. To minimize 

the effect of random image selection affecting the final accuracy 
of the trained network, ten networks were trained for each of the 
CNN layers to fully capture the variation in its accuracy. A similar 
treatment was performed for the SVM network training too. Here, 
instead of layers, each selected ‘Bin No.’ was iterated ten times, to 
obtain ten different networks for each ‘Bin No.’. 

Moreover, to understand the effect of grayscale vs binary 
images, the entire process described above was repeated for 
training and validating images in (1) grayscale format and (2) 
binary format. This exercise is performed to ascertain if the 
additional image information extracted by the machine learning 
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algorithms via the grayscale images results in improvement in the 
classification accuracy. For grayscale images, the total processing 
time taken is the summation of 𝑡𝑝𝑟𝑒, 𝑡𝑚𝑎𝑠𝑘, padding and resizing 
time (𝑡𝑝𝑎𝑑), and the ML processing time (𝑡𝑀𝐿). Therefore, the total 
processing time required for ML-based classification, 𝑡𝑡𝑜𝑡, 𝑀𝐿 = 𝑡𝑝𝑟𝑒 

+ 𝑡𝑚𝑎𝑠𝑘 + 𝑡𝑝𝑎𝑑 + 𝑡𝑀𝐿. The total processing time of the 𝑖𝑡ℎ image for the 
ML based classification has been made non-dimensional, i.e., 𝜏𝑖 = 
(𝑡𝑡𝑜𝑡, 𝑀𝐿⁄𝑡𝑡𝑜𝑡, 𝑚) 𝑖. This allows us to easily understand the time 
benefit or penalty associated with ML based classification process. 

Figure 8: The extracted feature of the image shown in Figure 2(a) is shown here, using a bin size of 9 and block size of 4X4 pixels.

The plots generated in the next section have been made using 
a total of 556 fresh images (39 in ‘Accept Right’, 79 in ‘Accept left’ 
and 438 in ‘Reject’) never ‘seen’ by the machine learning algorithm. 
For a given layer or bin number, all 556 images are classified, and 
a confusion matrix [15] is generated. The true positives for each 
classification category are the major diagonal elements of the 
confusion matrix. To obtain the true positive percentage (TPP) 
corresponding to each category, the major diagonal elements are 
divided with the total images i.e. 556 and multiplied by 100. The 
process is repeated for each of the ten such trained networks with 
a given layer or bin number. The mean TPP and standard deviation 
is evaluated for all ten iterations and presented in the accuracy 
plots in Figure 9 and Figure 10. For a given iteration of a layer or 
bin number, mean processing time for ML is divided by the mean 
morphology-based classification to obtain the processing time 
plots, i.e. 𝜏𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 〈𝑡𝑡𝑜𝑡, 𝑀𝐿〉⁄〈𝑡𝑡𝑜𝑡, 𝑚〉. The non-dimensional time 𝜏 
used in the plots below is the mean value of the ten iterations for a 
single layer/bin number, plotted along with error bar showing one 
standard deviation from the mean value. 

Results and Discussion 

Figure 9 shows the accuracy and processing time plots for 
CNN based classification for BW and grayscale images. The plots 
show that with increasing number of convolution layers, the 
accuracy increases along with increase in processing times for 
both BW and grayscale images. This is expected as increasing 
the number of hidden layers increases the total amount of 
useful features extracted by the trained network, resulting in an 
increased network complexity. In BW images, the ML algorithm is 
just presented with the outline of the embryos. Even though the 

embryo envelope remains the same, the shadow of the foreground 
cotyledons on the background ones provides more information 
for the ML algorithm for the grayscale images. This results in a 
slightly improved accuracy of the grayscale images. In both BW 
and grayscale images, if the number of layers is ≤ 4, we can take 
advantage of a slightly improved processing speed (~1.4% - 4.3% 
faster) when compared with morphology-based classification. The 
processing time is observed to be monotonically increasing, within 
the test envelope of two to seven convolution layers, Figure 10 
shows the accuracy, and the processing time plots for SVM based 
classification for BW and grayscale images. For all the test cases, 
SVM based classification consistently resulted in total processing 
times that are always observed to be lesser than morphology-
based evaluation. However, for BW cases the accuracy is below 
par when compared with CNN based classification process. The 
algorithm underperforms when classifying between accepted left 
and accepted right images in BW. This once again is assumed to 
be because of the lack of information available in the BW images 
which just shows an outline of the embryo without providing any 
pixel information of the cotyledons and their associated shadows.

It is observed that the processing time monotonically increases 
to 27 bins, beyond which it reduces at 36 bins. This result was 
consistently obtained across multiple runs of the simulation on 
different computing systems over different days, leading the 
authors to believe the reason to be mathematical origin. The 
number of bins can affect the feature space and the number of 
support vectors, which can indirectly affect the processing time 
of the SVM algorithm’s implementation in MATLAB. It is possible 
that increasing the number of bins led to a sparser feature 
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representation [16], which can be faster to process. For example, 
if most of the bins have low values for a given image (which is the 
case for both BW and grayscale images here), then many of the 
features in the high-dimensional feature space will be zero, leading 
to faster processing times. This information is useful to optimally 

select the number of bins to avoid data overfitting. Overall, the 
relationship between the number of bins and processing time 
in SVM image classification is complex and can depend on many 
factors, including the specific implementation of the algorithm 
and the characteristics of the image data. 

Figure 9: Accuracy and processing time of the CNN algorithm is shown for different number of hidden layers for BW (top row) and grayscale 
(bottom row) images.

Conclusion 

In this paper, we have explored using machine learning based 
sorting as opposed to traditional morphology-based sorting 
algorithm. We have provided an outline of the SE Fluidics setup 
that provides the capability of collecting thousands of images of 

somatic embryos in an automated fashion. Through these images, 
the mature embryos have the potential to be tracked from the 
deposition-germination planting stages and hence can be mapped 
with the genetic gains expected from these somatic embryos. 
The images used in this investigation are obtained from the SE 
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Fluidics system used for segregation, singulation and sorting of 
mature somatic embryos of Norway spruce. Out of the two tested 
ML methodologies, namely CNN and SVM, we have observed that 
SVM based sorting when applied to grayscale images can produce 
faster processing times than morphology-based sorting along 
with a very good accuracy level. Moreover, increasing the bin size 

does not provide any appreciable improvement in the accuracy 
of classifying the embryos. Using a typical bin size of 9, results in 
accuracy across all three classifications namely, ‘reject’, ‘accept 
right’ and ‘accept left’ of 80.1%, 82.3% and 90.9% respectively 
along with a 17.6% faster processing speed. 

Figure 10: Accuracy and processing time of the SVM algorithm is shown for different number of hidden layers for BW (top row) and grayscale 
(bottom row) images.

This work provides a preliminary study of exploring machine 
learning based sorting for somatic embryos with further scope of 
optimizing the ML pipeline and exploring other tuning parameters 
available in both CNN and SVM image sorting techniques. 

The preliminary results observed in this paper show that ML, 
especially SVM, could be effectively employed to sort images of 
somatic embryos in real-time as well as identify its orientation 
for in-line automated operation in a SE Fluidics system. However, 
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in this work we have restricted the classification process by self-
imposing the three categories of classification. In the future, 
we will allow the ML algorithm to determine the groupings, i.e., 
unsupervised learning. 
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