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Introduction 

The oncoming global climate changes, manifested as the 
increase of average temperatures, duration and severity of 
storms, droughts and floodings, dramatically affect plant growth 
and development that results in tremendous crop yield losses 
worldwide [1]. Therefore, improvement of the plant stress 
tolerance is one of the primary aims of plant physiologists, 
biochemists, geneticists and breeders working with crops. From 
the agricultural point of view, two aspects are of the principal 
importance in terms of the stress tolerance of the crop plants: (i) 
sustaining crop productivity and (ii) preserving crop quality (that 
ultimately affects nutritional properties of the foods, manufactured 
from these crops). Unfortunately, in the absolute majority of  
 

 
cases, only the first aspect is properly addressed, whereas the 
importance of the second one is often underestimated. Indeed, it 
is well-known, that even a short-term exposure to environmental 
stresses results in characteristic phenotypic changes, i.e. clearly 
visible changes in plant appearance and biochemical status [2-
4]. In respect to various stresses (drought, heat, cold, high salt 
and heavy metal contents in the environment), these changes 
are often underlied by essentially common physiological and 
biochemical mechanisms of the plant stress response [5]. Many 
of these mechanisms are most comprehensively characterized for 
the plant response to drought.

At the earlier steps of its development, the drought stress 
response is usually manifested by activation of protective 
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mechanisms preventing excessive tissue dehydration. The 
primary plant response at this step is the abscisic acid (ABA)-
dependent stomata closure. This key event ultimately causes the 
overload of the electron-transport chains (ETCs) in chloroplasts 
and mitochondria that is accompanied by enhanced transfer of 
electrons to molecular oxygen by the intermediate players of the 
ETCs [6,7]. Under these conditions, reactive oxygen species (ROS) 
are generated with the rates essentially overwhelming the cellular 
capacities for their detoxification, i.e. oxidative stress develops 
[8]. At the further step of the dehydration avoidance strategy, 
the plant accumulates osmoprotective proteins and metabolites 
(predominantly amino acids and sugars) [2,9]. The accompanying 
rearrangement of the cellular metabolism is usually referred to as 
metabolic adjustment [10,11].

Importantly, the simultaneous increase in the tissue ROS 
equilibrium concentrations and carbohydrate contents triggers 
oxidative degradation of cellular hydroxyl carbonyls and fatty 
acids, most typically associated with monosaccharide autoxidation 
[12,13] and lipid peroxidation [14], respectively, which ultimately 
result in so-called carbonyl stress, i.e. enhancement of reactive 
carbonyl compound (RCC) production [15]. These highly-reactive 
species readily modify cellular biopolymers, compromising their 
functions and nutritional properties. Specifically, on one hand, the 
reactions of the sugar-derived RCCs with proteins yield advanced 
glycation end products (AGEs). On the other hand, due to enhanced 
ROS generation and production of reactive intermediates of lipid 
peroxidation (GO, MGO, hydroxyaldehydes and ketoaldehydes), 
formation of advanced lipoxidation products (ALEs) is observed 
as well [16]. Both AGEs and ALEs are known to be toxic due to their 
pro-inflammatory properties, clearly exposed in mammals [17]. 
Generation of AGEs is well-characterized in animal tissues, and 
was recently confirmed in plants on the amino acid and proteome 
levels [18,19]. Moreover, the patterns of AGE-modified proteins 
were comprehensively characterized under the conditions of 
moderate osmotic stress [2]. Thus, stress-induced oxidative 
and carbonyl stresses might impact dramatically on nutritional 
properties of plant proteins. This aspect is often underestimated 
when new strategies to improve stress tolerance of crop plants 
are designed. Therefore, here we addressed different strategies 
to stimulate plant stress tolerance mechanisms including 
those which directed on simultaneous prevention of glyco- and 
lipotoxins formation and crop quality preservation.

Transgenic strategies to improve plant drought 
tolerance 

Obviously, the physiological and molecular mechanisms 
behind the plant stress tolerance need to be addressed before 
consideration of the agricultural strategies, which might be 
employed in the reduction of the deleterious effects associated 
with drought. Such stress-protective mechanisms might rely 
on (i) antioxidative enzymes, (ii) proteins responsive to stress-
induced ROS-mediated signals (e.g. enzymes of ABA synthesis 
and signaling), (iii) enzymes attenuating deleterious effects of 

oxidative stress (e.g. carbonyl and ROS scavengers), and (iv) 
proteins involved in recognition, repair and selective degradation 
of damaged polypeptides. Therefore, the key players of the related 
metabolic pathways might represent prospective molecular 
targets for different strategies to improve crop yields and quality.

Unfortunately, despite these obvious considerations, the 
most of the classical breeding strategies target exclusively higher 
crop yields without considering the underlying physiological 
mechanisms, which might negatively affect crop properties 
without any decrease of productivity [20,21]. Moreover, the 
breeding-based approaches are associated with several serious 
challenges, such as high time and labor investments, transfer of 
non-desired genes and genetic barriers [20].

These limitations can be, at least partly, overcome by marker-
assisted selection (MAS) [22,23] and genetic engineering (i.e. the 
transgenic approach) [24]. The first strategy represents a powerful 
tool for efficient identification of DNA markers for economically 
important and stress-related crop traits: mapping for quantitative 
trait loci (QTL) [25], identification of the single nucleotide 
polymorphism (SNP) [26] and simple sequence repeat (SSR) 
markers [27], as well as those associated with randomly amplified 
polymorphic DNA (RAPD) [28]. In particular, combination of 
conventional breeding strategies with MAS can be applied for 
introgression of stress tolerance to crop cultivars from wild 
predecessors (i.e. from the donors of the target genes associated 
with the plant stress tolerance) [20]. The MAS approach can be 
also employed for building of genetic maps, which are required 
for localization of the stress-dependently regulated genes [24]. In 
contrast to the classical approaches, the transgenic methods allow 
incorporation or silencing of the target genes in the recipient 
organism without the simultaneous transfer of undesirable genes 
from the donor one [24].

In terms of the biochemical mechanisms, stress tolerance 
can be reliably established for the cultivars featuring enhanced 
production of non-toxic natural stress protectors. In the most 
easy and straightforward way these stress protectors can act 
as low- or high-molecular weight antioxidants. For example, 
highly tolerant lines, featured with the over-expression of the 
genes encoding antioxidant enzymes were designed for some 
crop plants. Thus, transgenic lines, over-expressing superoxide 
dismutase were reported for rice, potato and alfalfa, whereas 
monodehydroascorbate reductase was successfully overexpressed 
in tobacco plants [29]. Other important players involved in plant 
stress response (osmoprotectors such as glycine betaine [30], 
proline [31], and trehalose [32]; late embryogenesis abundant 
(LEA) proteins, various molecules of ABA-biosynthesis and 
signaling) can be considered as the targets for the transgenic 
approach as well [33].

Unfortunately, despite their obvious efficiency, suggestions 
for agricultural application of transgenic plants still have not 
met an ultimate approval from the consumers, researchers and 
the members of national food safety control boards. Indeed, the 
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phenomenon of gene pleiotropy (which is manifested by multiple 
effects of individual genes on diverse plant traits) might affect 
biochemical homeostasis of a plant organism in a complex and 
often unpredictable way [34,35]. In this context, transgenic plants 
can be a potential source of toxicity, allergenicity and genetic 
hazards [36]. Relatively low ecological and physiological flexibility 
of transgenic crops might be another problem. Indeed, a permanent 
character of the genetically induced stress tolerance might result 
in high investment of growth energy even under a favorable water 
regimen [37]. Also, agricultural approaches, relying on a broad 
selection of cultivars, or even crops, are preferred in commercial 
application. This requirement is, however, incompatible with the 
transgenic approach.

Non-transgenic strategies to improve plant drought 
tolerance 

Due to the above listed disadvantages of the transgenic strategy, 
several non-transgenic approaches were recently proposed to 
improve plant tolerance to drought. These alternative strategies 
do not rely on genetic engineering tools, but employ informational 
resources of functional genomics - transcriptomics, proteomics 
and metabolomics. To date, the most established non-transgenic 
concepts are the ”molecular strengthening (MOST) treatment” 
[23] and the “phytoeffector approach” [38]. At the principal 
level, these concepts appear to be similar as they both are based 
on the comprehensive understanding of underlying molecular 
mechanisms affecting particular plant traits. This mechanistic 
information is necessary for adequate selection of potential 
targets, which can be activated or inactivated upon interaction 
with appropriate natural or synthetic molecular effectors. At 
this point, these strategies are analogous to the pharmaceutical 
approach for targeted delivery of medicines for therapy of human 
diseases. However, in this aspect the MOST treatment and the 
phytoeffector approach have different focusing.

Thus, the MOST treatment strategy assumes deep 
understanding of gene functions or/and molecular pathways [23]. 
It targets expression of specific traits, which impact essentially 
on general plant performance, e.g. improvement of yield stability 
under environmental stress conditions, modulation of plant 
development or morphology and reduction in fertilizer input 
[23]. In contrast, phytoeffector approach is focused exclusively 
at improvement of the plant stress tolerance traits with a special 
attention on preserving of crop productivity under unfavorable 
environmental conditions [39]. In the latter case, analysis of the 
related transcriptomics, proteomics and metabolomics data allows 
selection of the most promising proteins (stress enhancers), 
critically impacting on the deleterious effects accompanying 
the plant stress response. For these prospective targets, 
appropriate low molecular weight effectors (most often termed as 
phytoeffectors) can be selected and synthetically optimized. These 
small molecules might suppress development of oxidative stress 
and stress-related metabolic adjustment by affecting specific 

enzymes, preventing, thereby, productivity losses, enhancement 
of the toxicity related to specific metabolites, as well as glyco- and 
lipotoxins.

This phytoeffector strategy was proposed recently, and it is 
already established in the Wessjohann’s lab for poly-(ADP-ribose)-
polymerase (PARP) inhibitors [38]. This group demonstrated that 
inhibition of the PARP enzymes and related prevention of NADH 
depletion could give access to sustaining of plant crop productivity 
under the conditions of short-termed moderate drought. Later 
on, Marshall and co-workers proposed that receptor-like kinases 
(RLKs) could be another promising target for low-molecular weight 
phytoeffectors [40]. Due to its pronounced impact on the plant 
drought response, this protein family attracted a special attention 
of researchers [41]. Due to their involvement in various signaling 
cascades and dependence on small molecules (peptide ligands), 
the activity of RLKs can be easily modulated. This fact provides a 
unique opportunity for improvement of plant tolerance to drought 
(and, probably, to other stresses) [40]. Indeed, modulation of 
the RLK activity by synthetic molecules (phytoeffectors) can be 
readily expected. Such interactions would activate or repress the 
regulatory proteins and thus might be a powerful chemical tool to 
affect the relevant signaling pathways.

In general, the phytoeffector strategy includes the following 
steps: comprehensive search for target proteins acting as stress 
enhancers in plant experiment-based databases, confirmation 
of adverse impact of the proteins on the plant stress physiology, 
modeling of the protein structure, construction of corresponding 
chemicals (phytoeffectors), in vivo validation of their efficiency 
and field trials to confirm the applicability of the phytoeffectors 
used. Ideally, the potent phytoeffectors need to be designed 
as a universal tool, which can be applied to various crops at 
desired times and locations. These molecules must demonstrate 
high bioavailability, i.e. readily penetrate cell membranes and 
participate in the intracellular metabolism. Moreover, they need 
to be easy in application, e.g. via foliar spraying, root infiltration 
and/or pre-sowing treatment of seeds.

At the level of the seed pre-treatment, the phytoeffector 
approach can also be employed to establish so-called priming-
mediated plant tolerance. In general, priming is considered to be 
an adaptive strategy to stimulate and maintain an “alertness” state 
of the plant without exposure it to severe stress [42]. This leads 
to pre-activation of the tolerance mechanisms. Due to this, the 
full-scale response to the post-activation stress exposure would 
be developed faster. In terms of this concept, the effect of the 
phytoeffector might be associated with the enhanced production 
of the key cellular regulators, such as ABA and nitric oxide (NO). 

Targeting phytohormone-related signaling is another 
field of the phytoeffector application. Thereby, phytoeffectors 
might enhance phytohormone synthesis and slow down their 
degradation. It is well known, that application of exogenic ABA as 
a natural phytoeffector molecule appeared to be inefficient as no 
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enhancement of stress tolerance mechanisms could be observed 
in field-grown plants [43]. Kim at al attributed this failure to 
isomerization of the ABA aliphatic side chain. Under natural field 
conditions, high rates of this process might yield high amounts 
of physiologically inactive 2-trans ABA isomer [44]. However, 
several synthetic ABA analogs (sulfonamide-based compounds 
ABA mimic 1, 2, 3 (AMs 1-3) and pyrabactin [45]) which are able 
to trigger signaling cascades and to activate, thereby, tolerance 
mechanisms, appeared to be promising phytoeffectors. The 
potential use of these and several other synthetic ABA signaling 
pathway modulators in managing agronomic and post-harvest 
traits was comprehensively discussed recently [46,47].

Due to well-known importance of NO as a potent modulator of 
plant stress response [48-50], NO donors are currently recognized 
as promising stress-protective phytoeffectors. The most 
commonly used synthetic NO donors are sodium nitroprusside, 
S-nitrosoglutathione, S-nitroso-N-acetylpennicillamine and 
3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene [48,49,51]. Thus, 
it was shown that NO applied exogenously in the form of inorganic 
sodium nitroprusside and organic S-nitroso-N-acetylpenicillamine 
suppressed drought stress in wheat leaves. On the other hand, 
exogenous NO (also applied as sodium nitroprusside) showed 
good results in enhancement of drought tolerance in Tradescantia 
sp, Salpichroa organifolia, Vicia faba [52] and Medicago sativa [53]. 
The characteristics of NO release and some metabolic responses 
induced by the NO-donors are reviewed in the works of Ederli et 
al. (2009)[49] and Murgia et al. (2004) [50].

Recently, a new type of heterocyclic NO-donors, such 
as sydnone imines, have emerged recently. Sydnone imines 
represent a class of mesoionic heterocyclic compounds [54] 
exhibiting a broad range of biological activities and in this 
regard they are successfully applicable in medicine. Due to their 
improved hydrolytic stability and low toxicity (which were 
comprehensively confirmed in multiple pharmacokinetic studies 
[55]), these compounds present a promising alternative to the 
conventional NO-donating agents. Since 2017, several reports 
demonstrated a pronounced ability of selected sydnone imine 
derivates to act as plant growth stimulants, herbicide antidotes, 
retardants, germination inhibitors (herbicides), and inducers of 
plant tolerance to environmental stresses [56-60]. Recently, we 
summarized available state ofthe-art information on sydnone 
imine application to various crop plants (Triticum aestivum 
L, Zea mays L., Brassica napus L. Helianthus annuus), with a 
special emphasis on the structure-activity relationships (SAR) 
in the context of the growth modulating activity of the effector 
compounds [61]. Our search showed that 4-(α-hydroxybenzyl) 
sydnone imine derivatives containing an alkyl substituent in 
the position N-3 demonstrated pronounces growth-stimulating 
or antidote effects. The activity profiles of individual sydnone 
imines might be also affected by structure of the substituent at 
position N-6 [56,57,61]. However, despite the achieved progress, 
further investigations are necessary to characterize the structure–

activity relationships (SAR) completely. This would be absolutely 
mandatory to understand the potential of sydnone imines as a 
new class of promising phytoeffectors.

Conclusion

To summarize, despite the stress tolerance mechanisms act 
under the finely tuned control of multiple plant regulatory systems 
[4,62], the activities of individual stress-protective enzymes and 
even the whole adaptive pathways can be efficiently modulated by 
the application of low-molecular weight synthetic phytoeffectors. 
Most often, these plant-targeted effector molecules act as the 
inhibitors of enzymes, which are critical in manifestations of the 
deleterious effects accompanying plant stress response or as 
enhancers of stress-protective signaling. Inhibition of targeted 
enzymes or modulation of specific regulatory pathways results in 
improved plant survival under stressed conditions. Thus, the main 
goal of the phytoeffector application is improvement of stress 
tolerance and preserving the quality of crop production.

In general, application of these agrochemicals follows the 
logics behind the idea of targeted delivery of pharmaceuticals to 
diseased human tissues. Accordingly, the overall success of the 
phytoeffector application completely relies on the comprehensive 
understanding of the molecular mechanisms underlying the plant 
stress tolerance. Therefore, the functional genomics data acquired 
in comprehensive transcriptomics, proteomics, metabolomics and 
phenomics experiments serve as the starting point for selection 
of the specific phytoeffector strategy. The information, which can 
be extracted from these data by well-established bioinformatics 
tools, might give access to the appropriate phytoeffector targets, 
i.e. the proteins, most strongly involved in the deleterious effects 
accompanying the plant stress response. Further, by a combination 
of chemoinformatic and biochemical methods appropriate 
inhibitors can be selected and synthetically optimized to yield 
promising active phytoeffectors. Thus, depending on the specific 
enzymes targeted by these small molecules, the phytoeffectors can 
suppress development of oxidative stress, prevent formation of 
glyco- and lipotoxins, protect functional proteins from molecular 
damage and functionality loss and modulate stress-related 
metabolic adjustment, reducing stress-induced deleterious effects 
on crop productivity. Thus, undoubtedly, phytoeffector strategy 
allows targeting different manifestations of the drought stress 
response in crop plants. Highly likely, combining differentially 
targeted phytoeffectors within one application scheme might 
essentially improve the induced drought protective effect. 
Importantly, one needs to take into account, that application 
of phytoeffectors is a quite new field in plant stress physiology 
research. Therefore, multiple aspects still require more detailed 
and comprehensive investigations, in particular potential 
development of adverse effects in treated plants.
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