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Abstract

Urea deep placement (UDP), which directly targets nitrogen (N) to the root zone, has shown promise in enhancing crop uptake, yield, and
environmental sustainability compared to other N placement methods (non-UDP). This study utilized unmanned aerial systems (UAS or drones)
to evaluate the impact of different N placement strategies on rice spectral signatures across three production zones, with an average farmer field
size of 11.4 hectares. The research focused on analyzing Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation
Index (OSAVI) reflectance from UAS flight data collected during the booting stage in three rice health zones defined as low RO medium o
Q) and high TGS End-of-season rice grain yields revealed a nonlinear relationship with NDVI on the plot scale, whereas OSAVI exhibited
a significant linear correlation with plot yields across the different zones. Spatial analysis, supported by the Jenks natural breaks algorithm,
categorized OSAVI reflectance into four homogeneous groups, enabling predictions of rice yields at the plot scale and extrapolating plot yields
to farmer field levels. This approach refined assessment outcomes, effectively distinguishing between UDP and non-UDP treatments. The UDP
N management consistently outperformed other N placement methods, with yield increases of 9.9% at the plot level and 14.3% at the farmer
field level. Additionally, this spatial analysis facilitated the generation of high-resolution digital yield maps, providing a valuable tool for precision
agriculture to optimize N management and enhance overall productivity in rice cultivation.

Keywords: Unmanned Aerial Systems (UAS); urea deep placement (UDP); crop health; NDVI; OSAVI; Jenks Natural Breaks Algorithm; Upscaling

Abbreviations: UDP: Urea Deep Placement; N: Nitrogen; NDVI: Normalized Difference Vegetation Index; OSAV: Optimized Soil Adjusted Vegetation
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OM: Organic Matter; CEC: Cation Exchange Capacity; TN: Total Nitrogen; CVs: Coefficients of Variation; UAS: Unmanned Aerial System

Introduction

Rice (Oryza sativa L.) is Ghana's second most crucial staple
grain and a profitable cash crop for local farmers [1,2]. Ghana’s
annual per capita rice consumption has risen significantly
from 17.5 kg during 1999-2001 to 24 kg in 2010-2011, with
projections indicating an increase to 51.63 kilograms by 2020
[3,4]. Despite this growth, Ghana relies on imports for 66% of
its rice consumption. Low yields play a significant role in this
imbalance, with a national average of 3.28 mt ha! compared to an
attainable yield of 6.0 mt ha*[5]. Rice productivity in Ghana faces
a significant challenge due to low soil fertility, typically linked to

reduced organic carbon levels, as well as limited availability of
nitrogen (N) and phosphorus (P) [6,7]. Other social constraints
further contribute to the widening gap between local production
and imports. Notable issues include the high cost of improved
seeds, limited access to credit, and inadequate processing facilities

(8]
Despite a marginal increase in rice production to around
651,000 tons of milled rice in 2020 [9], an estimated $450 million

is allocated annually for rice imports to meet local demand [10].
The Government of Ghana has recently intensified efforts to
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develop the local rice sector, collaborating with international
organizations like the United States Agency for International
Development (USAID). This collaborative initiative aims to bolster
national rice security, generate youth employment opportunities,
stimulate economic growth, and alleviate poverty. Research by [11]
suggests that implementing appropriate policy measures could
narrow the gap between domestic rice production and imports.
Nitrogen emerges as a crucial yet limiting factor within rice
production systems. Be-yond maximizing rice yield, N is pivotal in
ensuring grain yield quality [12]. The substantial N requirement
underscores the need for efficient management to enhance
productivity. Traditionally, farmers employ surface broadcasting
of N-containing fertilizers for N application. However, N use
efficiency (NUE) is notably low, ranging between 30% and 50%
[13]. Factors contributing to N loss include high levels of ammonia
volatilization up to 50% of applied N, denitrification, leaching, and
surface runoff [14,15].

The urea deep placement technology development emerged
from a collaboration between the International Fertilizer
Development Center (IFDC) and primarily Bangladeshi farmers
[16]. A comprehensive examination of the technology’s features
and impactis outlined in the works of [17,18]. This farmer-friendly
advancement enhances NUE in rice production by mitigating
N loss through volatilization [19,20], thereby boosting rice
productivity. Urea super granules (USG) briquettes, acting as N
carriers in this technology, exhibited a 25 percent increase in rice
grain yield when applied at a rate of 56 kg N ha* compared to the
recommended dose of 100 kg N ha! using the conventional urea
broadcast method in Indonesia [21]. Similar positive outcomes
were observed in Ghana, Nigeria, and Burkina Faso [22-24].

Accurate and timely assessments of rice field extents and
their potential production capacity are essential for governmental
bodies, planners, and decision-makers [25]. However, existing
national statistics on crop production capacities often rely on field
surveys and farmer interviews. Besides occasional inaccuracies,
these data acquisition methods can be exceptionally time-
consuming, labor-intensive, and cost-ineffective. Additionally,
there is often a notable delay between data collection, collation,
and reporting [26].

Remote sensing has been employed for monitoring and
mapping extensive fields through satellite [27]
combined optical and radar satellite data from the Satellite Pour
I'Observation de la Terre (SPOT) to improve the accuracy of rice
yield predictions in Taiwan. Similarly, [28] suggested a multi-
satellite approach to assess the growth status of rice plants and
determine the protein content of rice grains. Additionally, [29]
used multispectral imagery from Landsat ETM+ to produce NDVI
data, which was subsequently used to evaluate rice crops’ health
and growth stages.

imagery.

Vegetation indices are crucial in remote sensing, assessing
vegetation’s presence and condition. Additionally, VIs can gauge
variations in physiological state and biophysical properties [30],

monitor crop growth, and evaluate vegetation stress and crop
yields [31,32]. VIs rely on the photosynthetic responses of green
vegetation to incident light. A high VI, termed “high health” in this
context, results from high reflectance in the infrared region of the
electromagnetic spectrum and low reflectance due to chlorophyll
absorption in the red spectrum. Conversely, stressed, unhealthy, or
deceased vegetation exhibits a low V], referred to as “low health,”
attributed to diminished chlorophyll pigment [33]. Challenges in
remote sensing include low spectral and temporal resolution and
cloud cover [34]. Furthermore, [35] suggested that this technology
is beneficial mainly for extensive studies and may not be suitable
for the smaller-scale farming systems commonly found in Africa
and Asia.

Over the past decade, UAS applications have expanded
significantly. Unmanned platforms provide greater

versatility and flexibility over satellites or other airborne
systems. UAVs can operate at low altitudes, capturing im-
ages with high temporal and spatial resolution [36-38]. These
characteristics enable UAS remote sensing to address research
inquiries and apply the technology in practical field scenarios.
NDVI is computed based on light intensities reflected from
canopies in the visual and near-infrared range [39]. This index
holds immense potential for extracting information about
dynamic changes in various vegetation types, making it a valuable
tool for investigating spatial and temporal variations in diverse
plant cover [40]. However, it has been observed that NDVI reaches
saturation levels when estimating biomass in fully developed
canopies [41,42]. However, several other VIs have been created
to examine spatial and temporal variations and remain sensitive
when NDVI saturates with OSAVI) [43] being one such index. In
addition, OSAVI incorporates a soil adjustment coefficient (0.16)
to mitigate variations in soil background conditions.

This study aims to achieve two interrelated objectives,
each supported by a pair of hypotheses. For the first objective,
hypothesis H1a posits that different N placement methods affect
end-of-season rice production. Hypothesis H1b suggests that
spectral signatures from UAS data can reliably predict the effects of
these N placement methods. For the second objective, hypothesis
H2a asserts that vegetation indices, such as OSAVI, strongly
correlate with rice yields, allowing for accurate prediction of field-
scale rice production. Hypothesis H2b proposes that visualizing
the OSAVI-yield relationship across the landscape can identify
high and low-productivity areas, providing valuable insights for
agricultural intervention.

The objectives of this study are to:

a) Investigate the use of UAS technology-acquired data to
compare the impact of different N placement alternatives on crop
spectral signatures and resulting end-of-season rice production.

b) Predict field-scale rice yields using OSAVI and visualize
how the OSAVI-yield relationship manifests across the landscape.
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Materials and Methods
Site Characterization

The research was conducted within the Tono Irrigation
Scheme (TIS) (latitude 10° 52’N; longitude -1° 11'W) situated in
the Kassena-Nankana East District of the Upper East Region of
Ghana (Figure 1a). This gravity-fed irrigation system operates on

reservoir storage, boasting a total capacity of 93 million m? and
covering a catchment area of 650 km? (Figure 1b). The scheme
is designed to irrigate 3,840 hectares of land potentially, yet it
currently provides irrigation to 2,490 hectares, predominantly
dedicated to rice cultivation. This scheme comprises 4,000
smallholder producers and the average farmer field sizes range
from 0.2 to 0.6 hectares.
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Figure 1: (a) Map showing the location of the Tono Irrigation Scheme in the Upper East Region of Ghana:
(b) Schematic of the reservoir serving perimeter and the rice production areas showing zones H, |, and J.
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Farmer Volunteers and Field Ground Mapping of
Producer Fields

Farmers from zones H, I, and | (Figure 1b) volunteered for
the study based on their N management preferences. The initial
group, UDP farmers, showed a keen interest in experimenting with
the emerging UDP N management technology. The second group
consisted of non-UDP volunteers, an independent set of farmers
with plots within the three zones who had not yet adopted the
UDP technology. These farmers autonomously performed various
agricultural tasks, including land preparation, seedling raising

in nurseries, transplanting, fertilizer application, weed and pest
control, and field harvesting. Fifty volunteers participated in this
study, with 25 assigned to each UDP and non-UDP N management
group. The distribution of farmers across the three zones is out-
lined in (Table 1).

Field sizes varied between 0.15 and 2.7 hectares, with an
average of 0.62 hectares. Zone ] had the largest average field size
among the three zones, measuring 0.86 hectares. This contrasted
significantly with Zone H (0.52 hectares) and Zone I (0.4 hectares).
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Table 1: Volunteer Farmers and their farm sizes within zones H, I, and J.

Non-UDP UDP
Zone Number of volunteers Total farm size (ha) Number of volunteers Total farm size (ha)
H 4 1.5 9 3.2
I 5 3.2 4 1.6
] 16 15.7 12 8.9

UAS Remote Sensing and Image Processing

At the beginning of the study, we used a handheld Garmin SD
MAP 64sc global positioning system (GPS) unit to delineate the
boundaries of each farmer’s rice field. Subsequently, we utilized
ArcGIS Pro to estimate the sizes of farmers’ fields based on the
coordinates of their field boundaries. It is crucial to highlight
that the farmer field within each zone served as the basic unit for
investigation and subsequent data analysis.

Atthe booting stage of the rice crop, low-altitude aerial surveys
were conducted for zones H, I, and ] (Figure 1b) as distinct units.
The flight boundaries were established using field coordinates
obtained from the initial ground GPS mapping. These coordinates
were imported into eMotion, a SenseFly software [44], to generate

autonomous flight plans for an eBee ag (Figure 2), a cost-effective
agricultural drone. The eBee offers fully autonomous flight
capabilities, from takeoff to landing, and is controlled via a user-
friendly ground control software that allows for mission planning
and real-time monitoring. This drone offers an extended flight
time of up to 55 minutes and 160 hectares / 395 acres coverage.
Two multispectral sensors were used, the Sequoia and the Sensor
Optimized for Drone Applications (SODA). The Sequoia sensor

captured images in the following four distinct bands: green (530-5570

nm)’ red (640-680 nm)” near-infrared (800-880 nm)” and red edge (710-740 nm)* It
also has an embedded 16 MP red (610-680y BTEEM (530 cen blue (450-
s00) camera. The SODA camera captured the red . .., green .,
5570 nm)’ and blue (450_500)bands.

N

Ve

Figure 2: Picture of eBee ag Drone (Sensefly (™).
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The eBee Ag drone, coupled with the Sequoia camera, was
flown at 127.4 meters above elevation data (AED), with a 60% fore
lap and 80% lateral overlap, resulting in a 12.0 cm/pixel ground
resolution. The same eBee was flown with the SODA camera at 74.3
meters with 65% forelap and 70% side-lap to achieve a 7.0 cm/
pixel. The initial image processing phase involved the eMotion 3
software [44]. This software facilitated georeferencing, alignment,
and stitching of images by identifying tie points in overlapping

images. Subsequently, the processed data were transferred to
Pix4D, where the Standard Ag multispectral processing option was
employed to generate seamless high-resolution orthomosaics for
Zones H, I, and ], as depicted in (Figure 3). Two vegetation indices,
NDVI and OSAVI, were computed, and their respective formulas
and references are provided in (Table 2). Reflectance imagery was
produced for the two vegetation indices.

e N
Plot scale data collection and Field scale data generation and
processing yield modeling
UAS Remote Sensing
Orthomosaics
NDVI reflectance OSAVI  reflectance
Homagenous
g =
l ! Group T b
Hom algorithm
Aggregate group
yields by plot
3

Predicted rice

yield map
Figure 3: Overall research data collection and data analysis workflow.

J
Table 2: Summary of aerial sensors, spectral bands, and formulae used to measure the NDVI and OSAVI.
Vegetation Index Sensor Type Spectral Band Central Wavelength Formula Reference
Infrared 780
Normal difference Sequoia Sensor
vege-tation index Optimized for Drone PNIR - pred [39]
(NDVI) Applica-tions (SODA) NDVI = ——
Red 670 PNIR + pred
Infrared 780
Vegetatonndes | Sg0r Optmed ;| s
(OSAVI) (SODA) Red 670 OSAVI = PNIR — pre
€ PNIR + pred +0.16
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Assessment of Crop Health Areas and Rice Grain Yield
Determination

Three crop health plots were identified, designated as low,
medium, and high, in farmers’ fields based on NDVI values obtained
from reflectance information and verified with visual assessment
within the three zones. The NDVI values used to define crop health
categories in UDP and non-UDP plots are presented in (Table 3). A

total of 141 evenly distributed plots were identified, with 47 plots
in each health zone category. These distinct areas of varying crop
health contained contiguous pixels sufficient to establish 4m? area
plots. The coordinates of the four corners defining each health
plot were recorded, and these 4m? zones subsequently served as
sampling plots for yield assessment. The average NDVI and OSAVI
values for each 4m? plot were also recorded from the reflectance

map.

Table 3: Selected physical and chemical properties of the surface soil (0 -25 cm) by zones, N management system, and their intercorrelations.

Sand Silt Clay P oM TN CEC
Zone
% % % % % % cmol(+) kg-1
H 54.7bt 27a 18.76a 5.4a 5.08b 1.94a 0.11a 18.38a
I 70.6a 16.7b 13.1b 5.7a 2.32c 1.16b 0.07b 7.48b
] 56.7b 28.7a 14.6b 5.9a 6.58a 1.23b 0.10b 7.94b
Soils under UDP and non-UDP management
Non-UDP 55.1a 27.7a 17.3a 5.6a 1.56a 0.09a 10.22a
uDp 65.2b 21.7b 13.6b 5.5a 1.30a 0.08a 8.18b
Pearson’s correlation test among soil parameters
Sand 1 -0.844** -0.717** -0.047* 0.249 -0.489** -0.419* -0.614**
Silt 1 0.370* -0.004 -0.117 0.307* 0.317 0.465%*
Clay 1 0.136 -0.451** 0.677** 0.414** 0.829**
pH 0.102 -0.124 -0.218 0.079
Bray1 P 1 -0.177 -0.117 -0.417**
oM 1 0.668** 0.733**
TN 1 0.501**

Means followed by the same letter in a column are not significantly different at the 0.05 probability Means followed by the same letter are not
significantly different at the 0.05 probability level based on Duncan’s multiple range test.

*, **Correlation is significant at 0.01 and 0.05 (Pearson).

Acronyms: OM: Organic matter; TN: Total nitrogen; CEC: Cation exchange capacity.

At the end of the growing season, a GPS device navigated to
the center of each 4m? plot. A handheld sickle was used to harvest
rice paddy within the designated sampling areas. The harvested
paddy was then threshed by hand, winnowed, and weighed.
Subsequently, the grain was air-dried for approximately a day,
and the grain moisture content was determined using the M3GTM
(Dickey-john) moisture meter. The grain weight in kg per hectare
was calculated using the following formula:

_ Grain yield kg/net plot m ) ¥(10000m/net plot m ) *(100-measured grain me%)
(100-14%standard grain me)

Grain yield(kg ha’ )

General Soil Characterization of Rice Production Zones

Surface (0 - 25 c¢m) soil surface samples of the 141 identified
plots were collected from centers of all health plots delineated
in farmer fields. Samples were air-dried, ground to pass a 2 mm
sieve, and characterized. Particle size analysis was carried out
using the pipette method [45]. A glass electrode measured soil pH
ina 1:1 soil/water ratio. Organic carbon and total N were analyzed

using a Leco Truspec C/N analyzer [46]. Plant available P was
extracted with Bray1P solution using a 1:7 soil/solution ratio [47].
Exchangeable cations, calcium (Ca), magnesium (Mg), potassium
(K), and sodium (Na), were extracted with neutral ammonium
acetate (1 M NH,0AC) [48]. The concentration of cations was
analyzed using ICP - AES. Effective cation exchange capacity
(ECEC) was estimated as the sum of exchangeable cations.

Yield Prediction and Mapping Based on Vegetation
Indices

Estimating and yield mapping based on vegetation indices
involved several crucial steps, as depicted in (Figure 3). They
involved (1) acquisition and mosaicking of multispectral images
acquired on a UAV platform, (2) extraction of NDVI VIs, (3)
identification of yield plots based on NDVI reflectance data,
and (4) rice yield assessment. With the objective to determine
the optimal vegetation index for predicting rice grain yields in
UDP and non-UDP fields, OSAVI emerged as the preferred yield
predictor, exhibiting a relatively high correlation with grain yield
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(r=10.72 p < 0.05) and the capability to address saturation issues
at high reflectance, a concern associated with NDVI. Utilizing
GIS-Pro, the Jenks Natural Breaks algorithm [49] was applied to
categorize the OSAVI raster map of each farmer’s field into four
distinct, natural, and homogeneous groups. The aggregation and
averaging of extrapolated yields of the four natural groups in each
plot generated grain yields on the spatial scale.

Statistical Analyses

Relationships between soil parameters were evaluated using
Pearson correlation analysis. Analysis of variance (ANOVA)
was used to test yield differences, and mean separations were
calculated using Tukey’s studentized range with an alpha of 0.05
differences [50]. All data were checked for normality supported
by a Shapiro-Wilk w statistic of 0.98 (p = 0.05) and a standard
probability plot using the STATISTIX [51] software. The following
two analytical procedures were used to evaluate and compare the
plot and spatial yield data obtained from the study: (a) Box-and-

whiskers analysis, a graphical representation of nonparametric
ANOVA, to provide a visual summary of the central tendency,
spread, and skewness of the data, and (b) descriptive statistics to
identify trends and potential relation-ships between the variables.

Extrapolation of Plot Scale Yield to Spatial Field Scale

Following the outlined process illustrated in the flow chart in
(Figure 3), grain yield data from 4m? plots were extrapolated to
encompass entire farmer field levels. Simple linear regression was
developed between OSAVI and rice grain yields independently
for plots in non-UDP and UDP fields. The models were used to
extrapolate OSAVI values to their corresponding rice yields at the
spatial scale. The projected yield values and the acreage within
each class were utilized to calculate the kilograms of rice. The
cumulative grain weight in the four natural break classes within
a field determined the overall grain weight. Dividing this total
weight by the entire field size yielded the average rice grain yield
per hectare in the field.
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Figure 4: RGB Orthomosaic of the study site showing mapped-out farmer field boundaries in Zone H (purple boundaries), Zone | (blue
boundaries) and Zone J (black boundaries).
N J
How to cite this article: Andrew M, Vincent Kodjo A, Thomas J, Ama Twumasi D, Amisu M. Spatial Analysis of UAS-generated Data to Evaluate
007 Nitrogen Fertilizer Placement Alternatives, Predict and Map End-of-Season Rice Yield. Agri Res& Tech: Open Access J. 2024; 28(5): 5656425.

DOI: 10.19080/ARTOAJ.2024.28.556425


http://dx.doi.org/10.19080/ARTOAJ.2024.28.556425

Agricultural Research & Technology: Open Access Journal

Results
Orthomosaics and Crop Health Delineation

The RGB Orthomosaics for zones H, I, and ] were created using
imagery captured on the UAS platform. GPS coor-dinates marking
field boundary points were employed to outline farmer fields in

each zone (Figure 4). These true-color images are powerful tools
that offer detailed, accurate, and easily interpretable information
about rice fields. High spatial resolution, geo-referencing, and
uniform scales enable precise measurements and analysis.
Reflectance maps derived from orthomosaics for NDVI and OSAVI
are illustrated in (Figures 5 and 6), respectively.
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The NDVI reflectance map (Figure 5) is created using the
formula developed by [39] to utilize satellite or UAS remote
sensing data for monitoring vegetation health and density.

This map shows high NDVI values ranging from 0.6 to 0.9
as dark green areas, indicating dense and healthy vegetation.
Moderate NDVI values (0.2 to 0.5) are displayed as light green
to yellow areas. Low-health regions, characterized by pale green

to almost yellowish areas, have NDVI values of less than 0.5.
The OSAVI reflectance map (Figure 6), derived from the formula
developed by [43], measures and monitors vegetation health,
density, and coverage. High OSAVI values, represented by green
colors, indicate dense and healthy vegetation. In contrast, lower
values, shown in yellow, indicate sparse or stressed vegetation.
Red colors on the OSA-VI map highlight areas of bare or exposed

soil.
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Midseason Crop Health, N Management, and End-of-
Season Rice Grain Yield

Figure 7 shows the relationships between the designated
midseason crop health as a function of NDVI and OSAVI and the
final rice grain yield obtained at the end of the season. There was a

linear increase in yield from low (osavi0544) 1O high (0SAVI0.685) health as
assessed by OSAVI. On the other hand, no statistically significant
differences in rice yields were observed between the medium WDV
0874) and high (Npvi 0.874) CTOP health zones based on NDVI. However,

medium and high-health zones had significantly higher yields

than low (NDVI 0.725)-health Zones.
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Figure 7: Relationships between crop health as assessed by NDVI and OSAVI and grain yields. Columns of the same color and the same
letters are not significantly different. Mean separations were calculated using Tukey’s stu-dentized range with an alpha of 0.05.
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Soil Characterization

The upper layer of soil (0 - 25 cm) displays a prevalent sandy
loam texture. Zone H exhibits the highest clay con-tent at 18.76%
(Table 3). In contrast, Zone I shows the highest sand content at
70.6%, a considerably more significant proportion compared
to zones H and ]. Across all zones, the soil demonstrates acidity.
While there is no notable difference in pH levels between zones,
there is a slight increase from 5.4 in Zone H to 5.9 in Zone ].
Zone H inherently has higher fertility levels than Zones I and J,
as evidenced by elevated levels of organic matter (OM), total N,
and cation exchange capacity (CEC). Particularly noteworthy is
Zone ], which exhibits significantly higher concentrations of plant-
available P, measuring 6.58 mg kg, in contrast to 5.08 mg kg'and
2.32 mg kg'in Zones I and H, respectively.

Though initially not included in the research plan, soil
properties have been naturally categorized into two groups
based on N management systems, providing context for the
study site background. Fields managed under UDP N revealed
distinctive textural and fertility relationships. The UDP soils
showed an average sand content of 65.2%, significantly higher

than the 55% observed in non-UDP fields. In contrast, there was
a reverse relationship in clay content, with non-UDP fields having
a significantly higher percentage of clay (27.3%) than UDP fields
(13.6%). While all soils had a sandy loam texture, the surfaces
of fields under UDP management were noticeably coarser than
their non-UDP counterparts, representing the sole distinctive
fertility parameter between the two. The different N management
systems could also be distinguished based on soil fertility. Non-
UDP-managed fields exhibited a significantly higher CEC level of
10.22 compared to 8.18 cmol(+) kg™* in UDP fields, as outlined in
(Table 3).

Crop health assessment

The NDVI values used to define crop health categories in UDP
and non-UDP fields are presented in (Table 4). These are based on
reflectance values obtained from UAS data collected at the booting
stage of the rice crop, as shown in (Figure 5).

Extrapolating Yields from Plot to Field Levels

The predictive equations for UDP and non-UDP fields are
presented in (Figures 7a and 7b), respectively. These equations
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reveal that OSAVI significantly predicts grain yield for UDP and
non-UDP conditions, though the impact and the models’ predictive
power differs. The equations suggest that OSAVI significantly
predicts rice grain yield, with 51.5% of the variability explained
for UDP and 75.5% for non-UDP.

Plot and Spatial Scale Yield Analysis

A total of 141 yield data points were collected from NDVI crop
health plots, with 68 points from UDP plots and 73 points (Table

5) from non-UDP plots. The data set was expanded to 324 yields
(160 UDP and 131 non-UDP) points at the field level by applying
spatial extrapolation using the Jenks natural breaks algorithm.
At the plot scale, UDP plots’ interquartile range (middle 50% of
yields) ranged between 5.55 and 7.78 mt ha!, indicating a 2.23 mt
ha* difference (Figure 9). Conversely, non-UDP fields exhibited a
broader interquartile range of 2.66 mt ha™*

4.91 to a maximum of 7.57 mt ha™™.

, with a minimum of

Table 4: Ranges of NDVI used for assigning crop health categories in UDP and non-UDP fields.

UDP Non-UDP
Crop Health Min Mean Max Std Minimum Mean Maximum Std
Low 0.609 0.728 0.847 0.061 0.524 0.716 0.847 0.082
Medium 0.848 0.874 0.893 0.021 0.847 0.87 0.893 0.069
High 0.894 0914 0.934 0.015 0.894 0.91 0.925 0.02
Table 5: Summary statistics of yield data from health plots and extrapolated spatial data of UDP and non-UDP fields.
N Management Asses.sment Range Minimum Maximum Median Value SRR Variance cv
points onn (%)
Plot scale Assessment
UDP 68 7.32 3.27 10.59 6.77 6.67 1.58 2.5 23.7
Non-UDP 73 7.99 1.92 9.91 6.03 6.14 1.82 2.3 29.61
Spatial scale Assessment
UDP 160 2.4 6.32 8.72 7.38 7.37 0.49 0.24 6.67
Non-UDP 131 2.49 5.71 7.29 6.32 6.45 0.57 0.3 8.45
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Figure 8: Linear regression of rice grain yield as a function of OSAVI (a) UDP and (b) non-UDP fields.
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Figure 9: Box-and-whisker plot showing variation in rice grain yields (mt ha-1) under UDP (n = 68) and non-UDP (n = 73) N management
plots. The figure also shows each N management system’s median; Duncan means categories and upper.
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The descriptive statistics (Table 5) revealed a yield range deviation (SD), variance, and coefficient of variation (CV) were
for UDP of 7.32 mt ha™* with a minimum of 3.27 mt ha* and a  1.58, 2.50, and 23.7%, respectively. The non-UDP plot yields had
maximum of 0.59 mt ha™, but non-UDP plots had a more extensive  an SD of 1.82, a variance of 3.30, and a CV of 29.61%. The average
range of 7.99 mt ha! with a minimum of 1.92 mt ha™ and a  grain yield from UDP plots was 6.67 mt ha'}, contrasting with 6.14
maximum of 9.91 mt ha™*. The non-UDP plot yields were relatively ~mt hain non-UDP plots (Figure 10). Tukey’s HSD test indicates
more dispersed than their UDP counterparts. UDP plots’ standard  that the 11% difference is statistically significant at an alpha 0.05.
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Figure 10: Comparative yield assessment of average rice grain yields from UDP and non-UDP plots. Bars with different letters significantly
differ at 0.05 per Tukey’s studentized test.
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Field Scale Yield Analysis

In Figure 11, the interquartile range in the UDP fields was
0.70 mt ha™, ranging from 7.05 to 7.75 mt ha™*, compared to
the interquartile range of 1.07 mt ha™* in the non-UDP data. The
ranges in yields were substantially reduced in the field yield
assessment (Table 5). It decreased by 4.92 mt kg between UDP
field and plot yields. A decrease of 5.5 kg ha' was observed in
non-UDP management between plot and field-based assessments.

The other dispersion variables also showed similar trends: SDs
decreased by 1.58 mt ha™ from plot to spatial field assessment
under UDP management to 0.49 mt. ha' at the field scale, while
non-UDP fields registered SDs of 1.82 mt ha’and 0.54 mt ha
!, respectively. Variances and CVs showed the same decreasing
trends from plot to field scales, as shown in (Table 5). There was
a 17% reduction in CV in UDP plot scale yields to field scale level,
while yield CV of non-UDP yield was reduced to 8.45% in non-UDP
fields.
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Figure 11: Box-and-whisker plot showing variation in rice grain yields (mt ha-1) under UDP (n = 160) and non-UDP (n = 131) N fields. The
figure also shows each N management system’s median; Duncan means categories and upper and lower quartiles.
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Figure 12: Grain yields in UDP and non-UDP farmers’ fields. Bars with different letters significantly differ at 0.05 per Tukey’s studentized
test.
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Scaling plot scale yields to spatial levels significantly reduced 23.07% and 29.96%, respectively, decreased to 6.7% and 8.45% at
data variability. Initially, variances in plot scale da-ta for UDP and  the farmer field scale. The calculated averages for rice grain yields
non-UDP were at 2.50 mt ha™ and 3.30 mt ha™, respectively, in UDP and non-UDP fields were 7.37 mt ha™* and 6.45 mt ha™, as
which decreased to 0.24 mt ha™ and 0.30 mt ha™ at the farmer depicted in (Figure 12). According to Tukey’s standardized test,
field level, as shown in (Table 5). Correspondingly, the coefficients  this 14% difference is statistically significant at the 0.05 level.
of variation for UDP and non-UDP plot-scale data, initially at

e N
1°6'40"W 1°6'0"W
1 L
z| N Legend &
£ g £
ol &
3 Farms B
Grain Yield

g T
it s
8] B
= 2
z =
g )

- A
& &

(g g | 1 I 1 |
i 0 1125 225 450 675 900 1,125 |
LI
1°640°W 1°8'0"W
Figure 13: Predicted total rice grain yield in Zones H, |, and J producer fields as a function of N placement (UDP and non-UDP) systems.
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Rice Grain Yield Mapping

An important outcome of this research is the generation of
high-resolution prediction digital maps illustrating the landscape
patterns of rice production in the three zones (Figure 13). These
rice grain yield maps are characterized by their high spatial
resolution, geo-referencing, and uniform scales, which enable
precise measurements and analysis. The scale of these maps allows
for identifying field boundaries and other pertinent field features,
providing a comprehensive overview of rice grain yield potential
across the three intervention zones [62]. It also facilitates precise
management and planning. Zone ] has a notably higher average
grain yield, achieving 7.17 mt ha! under UDP management
compared to 6.42 mt ha'non-under UDP management (Table 6).

Table 6: Summary of rice productivity in Zones H, |, and J as a function
of N management as assessed based on predicted yield data.

Zone UDP Non-UDP
Average grain yield
H 6.7abt 5.95a
I 6.22b 5.82a
J 7.17a 6.42a

tMeans followed by the same letter in a column are not significantly
different at the 0.05 probability level based on Duncan’s multiple range

test.
Discussion

The results of the physicochemical analysis affirmed the
variable and depleted nature of soils in the study zone. These
results support the claim by [52,53] that soil fertility poses a
significant challenge to agricultural production in the West African
Savanna. The low P content and organic matter levels agree with
the findings of [54], who reported soils’ low overall fertility status
in the Tono irrigation scheme.

In this study, UAS technology was utilized to evaluate the
impact of different N placement strategies on rice grain yield. The
rationale for employing this aerial assessment method is diverse.
Still, the primary advantages include: (1) UAS captures high-
resolution images that offer detailed spatial information, allowing
for precise assessment of N distribution and crop health [36]. (2)
The system detects small-scale variability within fields, enhancing
the understanding of N placement effectiveness [55] and enabling
the prediction and mapping of rice yields [56], a critical objective
of this study. (3) The multispectral imaging capabilities of the UAS
system permit the calculation of indices such as NDVI and OSAVI,
which are sensitive to N status and plant health. (4) Additionally,
UAS technology reduces the need for extensive manual labor in
data collection [57] because it covers large fields at a time [58].

According to [59], the booting stage of the rice crop at which
the aerial survey was carried out marks the rice plant’s nutrient
growth peak, featuring the highest leaf area index. The high leaf

areaindexreflects the plant’s maximal photosynthetic capacity and
yield potential [60], pertinent to one of the addressed objectives.
Orthomosaics from the captured imagery depicted rice fields in
the three intervention zones. These orthomosaics rectify heights,
tilts, topographic relief, and lens distortions, ensuring geometric
accuracy [61]. The high spatial resolution, geo-referencing, and
uniform scales of the map enable precise measurements and
analysis [62]. NDVI raster maps derived from these orthomosaics
facilitated the identification of crop health plots as a function of
UDP and non-UDP. The categorized NDVI means for UDP fields are
0.728 for low health, 0.874 for medium health, and 0.914 for high
health. The non-UDP mean crop health equivalents were 0.716
for low, 0.870 for medium, and 0.910 for high health plots. In a
previous study, [63] mapped rice crop health using NDVI ranges,
defining very good health as 0.721 - 0.920, good health as 0.421
- 0.720, normal health as 0.221 - 0.42, and poor health as 0.110
-0.220.

The end-of-season assessment of rice grain yield significantly
correlated withassigned crop health (r=0.68, significantatp<0.05).
However, this correlation weakened at elevated NDVI levels. This
finding aligns with [64], who observed a non-linear relationship
among NDVI, crop health, and end-of-season yields. According
to [65], NDVI tends to saturate asymptotically with increasing
reflectance in dense canopies, leading to the underestimation of
rice yields in areas with high vegetative growth, as observed by
[66]. Nevertheless, this study demonstrated that NDVI remained
sensitive enough to differentiate crop health areas and was a
distinguishing metric between N management systems.

In contrast, OSAVI exhibited a consistent linear relationship
(r = 0.72 significant at p<0.05) with crop health throughout the
spectrum, as noted by [67]. This vegetation index then functioned
as a proxy for forecasting end-of-season rice grain yields based on
mid-season reflectance. Consequently, akin to a prior study where
[68] employed linear regression models to forecastrice yield using
OSAVI, we leveraged the linear correlation association between
0OSAVI derived from a single midseason reflectance assessment to
extrapolate plot-scale rice yields to spatial dimensions.

In this study, the innovative integration of multiple vegetation
indices, NDVI and OSAVI, epitomizes the frontier of agricultural
monitoring and management. NDVI is renowned for identifying
crop health through sensitivity to vegetation density, chlorophyll
concentration, and vigor. OSAVI is also distinguished by its
robustness in reducing soil background effects. In comparing
multiple vegetation indices for rice yield estimation, OSAVI
[69,70] had a slightly better correlation with rice yield than NDVI,
especially in areas with low vegetation. The soil adjustment factor
in OSAVI helped reduce the noise caused by soil reflectance,
leading to more accurate yield prediction. A simi-lar study in
Southeast Asia [71] suggested that NDVI and OSAVI provide
more stable and reliable predictions in heterogeneous fields with
varying soil conditions. In this study, the creative use of NDVI and

How to cite this article: Andrew M, Vincent Kodjo A, Thomas J, Ama Twumasi D, Amisu M. Spatial Analysis of UAS-generated Data to Evaluate
m Nitrogen Fertilizer Placement Alternatives, Predict and Map End-of-Season Rice Yield. Agri Res& Tech: Open Access J. 2024; 28(5): 556425.

DOI: 10.19080/ARTOAJ.2024.28.556425


http://dx.doi.org/10.19080/ARTOAJ.2024.28.556425

Agricultural Research & Technology: Open Access Journal

OSAVI leverages the strengths of each index: NDVI for real-time
crop health monitoring and OSAVI for accurate yield predictions.

This study also leveraged the innovative computational
capabilities of the Jenks natural breaks classification algorithm
[49] to optimize the classification of OSAVI values from rice plots,
thereby enhancing yield predictions and their extrapolation to
spatial dimensions. Renowned for its robustness in handling
spatial data distribution, this classification system effectively
organizes data into distinct classes, minimizing variances within
classes while maximizing differences between them, as noted
by [72]. This ensures that the classification reflects true natural
groupings within the data [73], highlighting the algorithm’s
utility in capturing yield variation and emphasizing its value in
agricultural planning and management. [74] used this method to
classify crop yields and found it superior to other classification
methods in terms of accurately reflecting the spatial variability of
crop yields. Using this classification system on the high-resolution
data captured by UAS technology, the accuracy and variability of
predicted rice grain yields were significantly enhanced, leading to
improved data interpretation and visualization, as illustrated in
(Figure 12).

Linear regressions were established between OSAVI and
rice yield as a function of N placement. The coefficients of
determination, R2 for the prediction equations, were 0.5152
and 0.7555 for UDP and non-UDP plots, respectively. The
aggregation of extrapolated yields in the four Jenks grouping of
each field constituted the potential or predicted rice grain yield
for the entire field on the spatial scale. This approach allowed
for the prediction, subsequent mapping, and generation of a
realistic, spatially meaningful predicted potential rice yield map
for the intervention zones. This visual tool can be essential to
policymakers, researchers, and farmers, helping them quickly
grasp complex spatial data and make informed decisions before the
end of the growing season. As highlighted by [75], the assessment
scale is crucial in determining crop yield variability. Establishing
a connection between plot-scale data and extrapolated spatial
data is also essential for comprehending and predicting trends,
patterns, and variations in crop yields within fields. Additionally,
considering yield variability at multiple scales is pertinent for
modeling, predicting, and mapping, a key study objective for this
study.

Following the recommendation of [76], we utilized summary
statistics and the box-and-whisker plot, a graphical representation
depicting the distribution of a dataset. This approach effectively
illustrated the significant dependence of yield variability on the
evaluationscale. Twosignificantobservationswere maderegarding
grain yield structure and metrics at the plot and spatial data
levels. Firstly, it was noted that the relationships among different
metrics remained relatively consistent with those observed in the
analysis of plot-scale yields. Secondly, the transition from plot-
scale data to spatial levels substantially reduced data variability

and enhanced data quality. It improved the data’s discriminatory
capacity between N placement alternatives on rice yield, which is
the second primary objective of the study.

While data generated at both plot and spatial scales exhibited
the same relationships and trends, the upscaling process refined
the assessment data by reducing standard deviations, variance,
and coefficients of variation (CVs). As indicated by [77], the
success of spatial assessment hinges on the size and total number
of samples. In this study, augmenting the sample size from 141 plot
yields (68 UDP and 73 non-UDP plots) (Table 5) to 291 (160 UDP
and 131 non-UDP) (Table 6) following the Jenks natural breaks
grouping led to an improved data distribution and enhanced
discrimination assessment of N placement alternatives.

On UDP plots, grain yields ranged from a minimum of 3.27
to a maximum of 10.59 mt ha! with a range of 7.32 mt ha'but
narrowed to a minimum yield of 6.32 to a maximum of 8.72mt
ha, a range of 2.4 mt ha' at the spatial scale. Grain yield from
UDP plots exceeded their non-UDP counterparts by 0.69%, and
at the field scale, UDP outperformed non-UDP by 0.84%. Similar
relationships were obtained by [78,79] in their rice yield-N
placement strategies investigations in Northern Ghana and
Southern Bangladesh, respectively.

The data and utilized
straightforward spatial analysis to illustrate, predict, and map
the end-of-season rice grain yield. The maps illustrate rice yield’s

spatial distribution and variability across the three intervention

research produced accurate

zones, providing insights into landscape-level production patterns.
The mapsare created with high spatial resolution, allowing detailed
visualization of yield patterns across the landscape. These not
only facilitate a detailed examination of the spatial variability in
rice yield but also support targeted agricultural interventions and
re-source management by highlighting areas with different yield
potentials. A thorough examination of the anticipated yield chart
(Figure 12), corroborated by a yield analysis (Table 6), revealed
that zone | possessed the highest yield potential, averaging 7.17
metric tons per hectare. This yield is notably superior compared
to zones H and .

The observed yield distribution projected by the study
corresponds with the soil fertility patterns noted during the initial
physicochemical assessment of the project area. The P content was
prominent among the fertility indicators, affecting the rice grain
yield after fulfilling the N requirement. This finding echoes a similar
study conducted in Pakistan [80], where applying 90 kilograms of
P205 led to a 29% increase in paddy rice yield compared to the
control once the N levels were adequate. Furthermore, Pearson
correlation analysis demonstrated a significant link between P
and rice grain yield (r = 0.74, significant at 0.05). In contrast, the
high sand content (70.6%) in Zone I is likely re-sponsible for the
reduced grain yield observed, which could adversely affect the
soil’s water and nutrient dynamics.
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Conclusion

This study employed Unmanned Aerial System (UAS)-derived
data to create reflectance orthomosaics of NDVI and OSAVI. at
the booting stage of the rice crop. Three progressive health plots
were identified in UDP and non-UDP N placement rice fields using
NDVI. While a linear correlation was observed between NDVI and
crop health, its relationship with end-of-season rice grain yield
was nonlinear. In contrast, OSAVI exhibited linear correlations
with crop health and end-of-year yields, establishing it as the
preferred end-of-season yield predictor. In addition, OSAVI pro-
vided more suitable and reliable predictions in heterogeneous
fields with varying soil conditions and was therefore utilized as a
suitable index to extrapolate plot yield data to spatial dimensions
through linear regression.

The OSAVI data in the linear equation were generated from
distinct natural homogeneous groups identified by the Jenks
natural breaks algorithm for each farmer’s field. Aggregating the
four natural break yields constituted the predicted average rice
yield for the respective field, generating spatially meaningful
predicted yields for each zone. This process produced a high-
resolution, practical digital spatial yield map depicting rice
distribution and productivity for each zone. The yield data
analysis from plot-level and spatial scale assessments involved
summary statistics and plot-scale analyses. Although yields
from both scales demonstrated similar relationships and trends,
upscaling plot data to spatial dimensions refined the assessment
data by reducing standard deviations, variances, and coefficients
of variation.

Assessing the impact of N placement at the plot scale
highlighted the superiority of UDP-N placement over non-UDP
N management by 9.9%, equivalent to 0.6 mt ha™. In spatial
assessment data, UDP field yields surpassed on-UDP counterparts,
outperforming non-UDP by 14.3%, resulting in a yield differential
of 0.92 mt ha™™. This research has developed a concrete protocol
for predicting and producing high-resolution maps of rice yield,
which can be analogous to field mapping, utilizing midseason crop
reflectance data generated from the UAS technology.
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