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Introduction

Rice (Oryza sativa L.) is Ghana’s second most crucial staple 
grain and a profitable cash crop for local farmers [1,2]. Ghana’s 
annual per capita rice consumption has risen significantly 
from 17.5 kg during 1999-2001 to 24 kg in 2010-2011, with 
projections indicating an increase to 51.63 kilograms by 2020 
[3,4]. Despite this growth, Ghana relies on imports for 66% of 
its rice consumption. Low yields play a significant role in this 
imbalance, with a national average of 3.28 mt ha-1 compared to an 
attainable yield of 6.0 mt ha-1 [5]. Rice productivity in Ghana faces 
a significant challenge due to low soil fertility, typically linked to  

 
reduced organic carbon levels, as well as limited availability of 
nitrogen (N) and phosphorus (P) [6,7]. Other social constraints 
further contribute to the widening gap between local production 
and imports. Notable issues include the high cost of improved 
seeds, limited access to credit, and inadequate processing facilities 
[8].

Despite a marginal increase in rice production to around 
651,000 tons of milled rice in 2020 [9], an estimated $450 million 
is allocated annually for rice imports to meet local demand [10]. 
The Government of Ghana has recently intensified efforts to 
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develop the local rice sector, collaborating with international 
organizations like the United States Agency for International 
Development (USAID). This collaborative initiative aims to bolster 
national rice security, generate youth employment opportunities, 
stimulate economic growth, and alleviate poverty. Research by [11] 
suggests that implementing appropriate policy measures could 
narrow the gap between domestic rice production and imports. 
Nitrogen emerges as a crucial yet limiting factor within rice 
production systems. Be-yond maximizing rice yield, N is pivotal in 
ensuring grain yield quality [12]. The substantial N requirement 
underscores the need for efficient management to enhance 
productivity. Traditionally, farmers employ surface broadcasting 
of N-containing fertilizers for N application. However, N use 
efficiency (NUE) is notably low, ranging between 30% and 50% 
[13]. Factors contributing to N loss include high levels of ammonia 
volatilization up to 50% of applied N, denitrification, leaching, and 
surface runoff [14,15].

The urea deep placement technology development emerged 
from a collaboration between the International Fertilizer 
Development Center (IFDC) and primarily Bangladeshi farmers 
[16]. A comprehensive examination of the technology’s features 
and impact is outlined in the works of [17,18]. This farmer-friendly 
advancement enhances NUE in rice production by mitigating 
N loss through volatilization [19,20], thereby boosting rice 
productivity. Urea super granules (USG) briquettes, acting as N 
carriers in this technology, exhibited a 25 percent increase in rice 
grain yield when applied at a rate of 56 kg N ha-1 compared to the 
recommended dose of 100 kg N ha-1 using the conventional urea 
broadcast method in Indonesia [21]. Similar positive outcomes 
were observed in Ghana, Nigeria, and Burkina Faso [22-24].

Accurate and timely assessments of rice field extents and 
their potential production capacity are essential for governmental 
bodies, planners, and decision-makers [25]. However, existing 
national statistics on crop production capacities often rely on field 
surveys and farmer interviews. Besides occasional inaccuracies, 
these data acquisition methods can be exceptionally time-
consuming, labor-intensive, and cost-ineffective. Additionally, 
there is often a notable delay between data collection, collation, 
and reporting [26].

Remote sensing has been employed for monitoring and 
mapping extensive fields through satellite imagery. [27] 
combined optical and radar satellite data from the Satellite Pour 
l’Observation de la Terre (SPOT) to improve the accuracy of rice 
yield predictions in Taiwan. Similarly, [28] suggested a multi-
satellite approach to assess the growth status of rice plants and 
determine the protein content of rice grains. Additionally, [29] 
used multispectral imagery from Landsat ETM+ to produce NDVI 
data, which was subsequently used to evaluate rice crops’ health 
and growth stages.

Vegetation indices are crucial in remote sensing, assessing 
vegetation’s presence and condition. Additionally, VIs can gauge 
variations in physiological state and biophysical properties [30], 

monitor crop growth, and evaluate vegetation stress and crop 
yields [31,32]. VIs rely on the photosynthetic responses of green 
vegetation to incident light. A high VI, termed “high health” in this 
context, results from high reflectance in the infrared region of the 
electromagnetic spectrum and low reflectance due to chlorophyll 
absorption in the red spectrum. Conversely, stressed, unhealthy, or 
deceased vegetation exhibits a low VI, referred to as “low health,” 
attributed to diminished chlorophyll pigment [33]. Challenges in 
remote sensing include low spectral and temporal resolution and 
cloud cover [34]. Furthermore, [35] suggested that this technology 
is beneficial mainly for extensive studies and may not be suitable 
for the smaller-scale farming systems commonly found in Africa 
and Asia.

Over the past decade, UAS applications have expanded 
significantly. Unmanned platforms provide greater 

versatility and flexibility over satellites or other airborne 
systems. UAVs can operate at low altitudes, capturing im-
ages with high temporal and spatial resolution [36-38]. These 
characteristics enable UAS remote sensing to address research 
inquiries and apply the technology in practical field scenarios. 
NDVI is computed based on light intensities reflected from 
canopies in the visual and near-infrared range [39]. This index 
holds immense potential for extracting information about 
dynamic changes in various vegetation types, making it a valuable 
tool for investigating spatial and temporal variations in diverse 
plant cover [40]. However, it has been observed that NDVI reaches 
saturation levels when estimating biomass in fully developed 
canopies [41,42]. However, several other VIs have been created 
to examine spatial and temporal variations and remain sensitive 
when NDVI saturates with OSAVI) [43] being one such index. In 
addition, OSAVI incorporates a soil adjustment coefficient (0.16) 
to mitigate variations in soil background conditions.

This study aims to achieve two interrelated objectives, 
each supported by a pair of hypotheses. For the first objective, 
hypothesis H1a posits that different N placement methods affect 
end-of-season rice production. Hypothesis H1b suggests that 
spectral signatures from UAS data can reliably predict the effects of 
these N placement methods. For the second objective, hypothesis 
H2a asserts that vegetation indices, such as OSAVI, strongly 
correlate with rice yields, allowing for accurate prediction of field-
scale rice production. Hypothesis H2b proposes that visualizing 
the OSAVI-yield relationship across the landscape can identify 
high and low-productivity areas, providing valuable insights for 
agricultural intervention.

The objectives of this study are to:

a)	 Investigate the use of UAS technology-acquired data to 
compare the impact of different N placement alternatives on crop 
spectral signatures and resulting end-of-season rice production. 

b)	 Predict field-scale rice yields using OSAVI and visualize 
how the OSAVI-yield relationship manifests across the landscape.

http://dx.doi.org/10.19080/ARTOAJ.2024.28.556425
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Materials and Methods

Site Characterization 

The research was conducted within the Tono Irrigation 
Scheme (TIS) (latitude 10° 52’N; longitude -1° 11’W) situated in 
the Kassena-Nankana East District of the Upper East Region of 
Ghana (Figure 1a). This gravity-fed irrigation system operates on 

reservoir storage, boasting a total capacity of 93 million m3 and 
covering a catchment area of 650 km2 (Figure 1b). The scheme 
is designed to irrigate 3,840 hectares of land potentially, yet it 
currently provides irrigation to 2,490 hectares, predominantly 
dedicated to rice cultivation. This scheme comprises 4,000 
smallholder producers and the average farmer field sizes range 
from 0.2 to 0.6 hectares.

Figure 1: (a) Map showing the location of the Tono Irrigation Scheme in the Upper East Region of Ghana: 
(b) Schematic of the reservoir serving perimeter and the rice production areas showing zones H, I, and J.

Farmer Volunteers and Field Ground Mapping of 
Producer Fields

Farmers from zones H, I, and J (Figure 1b) volunteered for 
the study based on their N management preferences. The initial 
group, UDP farmers, showed a keen interest in experimenting with 
the emerging UDP N management technology. The second group 
consisted of non-UDP volunteers, an independent set of farmers 
with plots within the three zones who had not yet adopted the 
UDP technology. These farmers autonomously performed various 
agricultural tasks, including land preparation, seedling raising 

in nurseries, transplanting, fertilizer application, weed and pest 
control, and field harvesting. Fifty volunteers participated in this 
study, with 25 assigned to each UDP and non-UDP N management 
group. The distribution of farmers across the three zones is out-
lined in (Table 1).

Field sizes varied between 0.15 and 2.7 hectares, with an 
average of 0.62 hectares. Zone J had the largest average field size 
among the three zones, measuring 0.86 hectares. This contrasted 
significantly with Zone H (0.52 hectares) and Zone I (0.4 hectares).

http://dx.doi.org/10.19080/ARTOAJ.2024.28.556425
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Table 1: Volunteer Farmers and their farm sizes within zones H, I, and J.

 
Zone

Non-UDP UDP

Number of volunteers Total farm size (ha) Number of volunteers Total farm size (ha)

H 4 1.5 9 3.2

I 5 3.2 4 1.6

J 16 15.7 12 8.9

UAS Remote Sensing and Image Processing

At the beginning of the study, we used a handheld Garmin SD 
MAP 64sc global positioning system (GPS) unit to delineate the 
boundaries of each farmer’s rice field. Subsequently, we utilized 
ArcGIS Pro to estimate the sizes of farmers’ fields based on the 
coordinates of their field boundaries. It is crucial to highlight 
that the farmer field within each zone served as the basic unit for 
investigation and subsequent data analysis.

At the booting stage of the rice crop, low-altitude aerial surveys 
were conducted for zones H, I, and J (Figure 1b) as distinct units. 
The flight boundaries were established using field coordinates 
obtained from the initial ground GPS mapping. These coordinates 
were imported into eMotion, a SenseFly software [44], to generate 

autonomous flight plans for an eBee ag (Figure 2), a cost-effective 
agricultural drone. The eBee offers fully autonomous flight 
capabilities, from takeoff to landing, and is controlled via a user-
friendly ground control software that allows for mission planning 
and real-time monitoring. This drone offers an extended flight 
time of up to 55 minutes and 160 hectares / 395 acres coverage. 
Two multispectral sensors were used, the Sequoia and the Sensor 
Optimized for Drone Applications (SODA). The Sequoia sensor 
captured images in the following four distinct bands: green (530-5570 

nm), red (640-680 nm), near-infrared (800-880 nm), and red edge (710-740 nm). It 
also has an embedded 16 MP red (640-680), green (530-5570 nm) blue (450-

500) camera. The SODA camera captured the red (640-680), green (530-

5570 nm), and blue (450-500) bands.

Figure 2: Picture of eBee ag Drone (Sensefly (™).
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The eBee Ag drone, coupled with the Sequoia camera, was 
flown at 127.4 meters above elevation data (AED), with a 60% fore 
lap and 80% lateral overlap, resulting in a 12.0 cm/pixel ground 
resolution. The same eBee was flown with the SODA camera at 74.3 
meters with 65% forelap and 70% side-lap to achieve a 7.0 cm/
pixel. The initial image processing phase involved the eMotion 3 
software [44]. This software facilitated georeferencing, alignment, 
and stitching of images by identifying tie points in overlapping 

images. Subsequently, the processed data were transferred to 
Pix4D, where the Standard Ag multispectral processing option was 
employed to generate seamless high-resolution orthomosaics for 
Zones H, I, and J, as depicted in (Figure 3). Two vegetation indices, 
NDVI and OSAVI, were computed, and their respective formulas 
and references are provided in (Table 2). Reflectance imagery was 
produced for the two vegetation indices.

Figure 3: Overall research data collection and data analysis workflow.

Table 2: Summary of aerial sensors, spectral bands, and formulae used to measure the NDVI and OSAVI.

Vegetation Index Sensor Type Spectral Band Central Wavelength Formula Reference

Normal difference 
vege-tation index 

(NDVI)

Sequoia Sensor 
Optimized for Drone 
Applica-tions (SODA)

Infrared 780

NIR redNDVI
NIR red

ρ ρ
ρ ρ

−
=

+  

[39]

Red 670

Vegetation Index 
(OSAVI)

Sensor Optimized for 
Drone Applications 

(SODA)

Infrared 780

  0.16
NIR redOSAVI

NIR red
ρ ρ

ρ ρ
−

=
+ +

[40]
Red 670
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Assessment of Crop Health Areas and Rice Grain Yield 
Determination

Three crop health plots were identified, designated as low, 
medium, and high, in farmers’ fields based on NDVI values obtained 
from reflectance information and verified with visual assessment 
within the three zones. The NDVI values used to define crop health 
categories in UDP and non-UDP plots are presented in (Table 3). A 

total of 141 evenly distributed plots were identified, with 47 plots 
in each health zone category. These distinct areas of varying crop 
health contained contiguous pixels sufficient to establish 4m2 area 
plots. The coordinates of the four corners defining each health 
plot were recorded, and these 4m2 zones subsequently served as 
sampling plots for yield assessment. The average NDVI and OSAVI 
values for each 4m2 plot were also recorded from the reflectance 
map.

Table 3: Selected physical and chemical properties of the surface soil (0 -25 cm) by zones, N management system, and their intercorrelations.

Zone
Sand Silt Clay pH P OM T N CEC

% % % % % % % cmol(+) kg-1

H 54.7b† 27a 18.76a 5.4a 5.08b 1.94a 0.11a 18.38a

I 70.6a 16.7b 13.1b 5.7a 2.32c 1.16b 0.07b 7.48b

J 56.7b 28.7a 14.6b 5.9a 6.58a 1.23b 0.10b 7.94b

Soils under UDP and non-UDP management

Non-UDP 55.1a 27.7a 17.3a 5.6a 1.56a 0.09a 10.22a  

UDP 65.2b 21.7b  13.6b 5.5a 1.30a 0.08a   8.18b

Pearson’s correlation test among soil parameters

Sand 1 -0.844** -0.717** -0.047* 0.249 -0.489** -0.419* -0.614**

Silt   1 0.370* -0.004 -0.117 0.307* 0.317 0.465**

Clay     1 0.136 -0.451** 0.677** 0.414** 0.829**

pH       1 0.102 -0.124 -0.218 0.079

Bray1 P         1 -0.177 -0.117 -0.417**

OM           1 0.668** 0.733**

TN             1 0.501**

Means followed by the same letter in a column are not significantly different at the 0.05 probability Means followed by the same letter are not 
significantly different at the 0.05 probability level based on Duncan’s multiple range test.

*, **Correlation is significant at 0.01 and 0.05 (Pearson).

Acronyms: OM: Organic matter; TN: Total nitrogen; CEC: Cation exchange capacity.

At the end of the growing season, a GPS device navigated to 
the center of each 4m2 plot. A handheld sickle was used to harvest 
rice paddy within the designated sampling areas. The harvested 
paddy was then threshed by hand, winnowed, and weighed. 
Subsequently, the grain was air-dried for approximately a day, 
and the grain moisture content was determined using the M3GTM 
(Dickey-john) moisture meter. The grain weight in kg per hectare 
was calculated using the following formula:

( ) ( ) ( ) ( )
( )

-1 Grain yield kg net plot m * 10000m net plot m * 100-measured grain mc%
Grain yield kg ha =

100-14%standard grain mc

General Soil Characterization of Rice Production Zones

Surface (0 - 25 cm) soil surface samples of the 141 identified 
plots were collected from centers of all health plots delineated 
in farmer fields. Samples were air-dried, ground to pass a 2 mm 
sieve, and characterized. Particle size analysis was carried out 
using the pipette method [45]. A glass electrode measured soil pH 
in a 1:1 soil/water ratio. Organic carbon and total N were analyzed 

using a Leco Truspec C/N analyzer [46]. Plant available P was 
extracted with Bray1P solution using a 1:7 soil/solution ratio [47]. 
Exchangeable cations, calcium (Ca), magnesium (Mg), potassium 
(K), and sodium (Na), were extracted with neutral ammonium 
acetate (1 M NH4OAC) [48]. The concentration of cations was 
analyzed using ICP - AES. Effective cation exchange capacity 
(ECEC) was estimated as the sum of exchangeable cations.

Yield Prediction and Mapping Based on Vegetation 
Indices

Estimating and yield mapping based on vegetation indices 
involved several crucial steps, as depicted in (Figure 3). They 
involved (1) acquisition and mosaicking of multispectral images 
acquired on a UAV platform, (2) extraction of NDVI VIs, (3) 
identification of yield plots based on NDVI reflectance data, 
and (4) rice yield assessment. With the objective to determine 
the optimal vegetation index for predicting rice grain yields in 
UDP and non-UDP fields, OSAVI emerged as the preferred yield 
predictor, exhibiting a relatively high correlation with grain yield 
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(r = 0.72 p < 0.05) and the capability to address saturation issues 
at high reflectance, a concern associated with NDVI. Utilizing 
GIS-Pro, the Jenks Natural Breaks algorithm [49] was applied to 
categorize the OSAVI raster map of each farmer’s field into four 
distinct, natural, and homogeneous groups. The aggregation and 
averaging of extrapolated yields of the four natural groups in each 
plot generated grain yields on the spatial scale.

Statistical Analyses

Relationships between soil parameters were evaluated using 
Pearson correlation analysis. Analysis of variance (ANOVA) 
was used to test yield differences, and mean separations were 
calculated using Tukey’s studentized range with an alpha of 0.05 
differences [50]. All data were checked for normality supported 
by a Shapiro-Wilk w statistic of 0.98 (p = 0.05) and a standard 
probability plot using the STATISTIX [51] software. The following 
two analytical procedures were used to evaluate and compare the 
plot and spatial yield data obtained from the study: (a) Box-and-

whiskers analysis, a graphical representation of nonparametric 
ANOVA, to provide a visual summary of the central tendency, 
spread, and skewness of the data, and (b) descriptive statistics to 
identify trends and potential relation-ships between the variables. 

Extrapolation of Plot Scale Yield to Spatial Field Scale 

Following the outlined process illustrated in the flow chart in 
(Figure 3), grain yield data from 4m² plots were extrapolated to 
encompass entire farmer field levels. Simple linear regression was 
developed between OSAVI and rice grain yields independently 
for plots in non-UDP and UDP fields. The models were used to 
extrapolate OSAVI values to their corresponding rice yields at the 
spatial scale. The projected yield values and the acreage within 
each class were utilized to calculate the kilograms of rice. The 
cumulative grain weight in the four natural break classes within 
a field determined the overall grain weight. Dividing this total 
weight by the entire field size yielded the average rice grain yield 
per hectare in the field. 

Figure 4: RGB Orthomosaic of the study site showing mapped-out farmer field boundaries in Zone H (purple boundaries), Zone I (blue 
boundaries) and Zone J (black boundaries).

http://dx.doi.org/10.19080/ARTOAJ.2024.28.556425
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Results

Orthomosaics and Crop Health Delineation 

The RGB Orthomosaics for zones H, I, and J were created using 
imagery captured on the UAS platform. GPS coor-dinates marking 
field boundary points were employed to outline farmer fields in 

each zone (Figure 4). These true-color images are powerful tools 
that offer detailed, accurate, and easily interpretable information 
about rice fields. High spatial resolution, geo-referencing, and 
uniform scales enable precise measurements and analysis. 
Reflectance maps derived from orthomosaics for NDVI and OSAVI 
are illustrated in (Figures 5 and 6), respectively.

Figure 5: Reflectance maps of NDVI of individual farmer fields in Zones H, I, and J.
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How to cite this article: Andrew M, Vincent Kodjo A, Thomas J, Ama Twumasi D, Amisu M. Spatial Analysis of UAS-generated Data to Evaluate 
Nitrogen Fertilizer Placement Alternatives, Predict and Map End-of-Season Rice Yield. Agri Res& Tech: Open Access J. 2024; 28(5): 556425. 
DOI: 10.19080/ARTOAJ.2024.28.556425

009

Agricultural Research & Technology: Open Access Journal 

The NDVI reflectance map (Figure 5) is created using the 
formula developed by [39] to utilize satellite or UAS remote 
sensing data for monitoring vegetation health and density.

This map shows high NDVI values ranging from 0.6 to 0.9 
as dark green areas, indicating dense and healthy vegetation. 
Moderate NDVI values (0.2 to 0.5) are displayed as light green 
to yellow areas. Low-health regions, characterized by pale green 

to almost yellowish areas, have NDVI values of less than 0.5. 
The OSAVI reflectance map (Figure 6), derived from the formula 
developed by [43], measures and monitors vegetation health, 
density, and coverage. High OSAVI values, represented by green 
colors, indicate dense and healthy vegetation. In contrast, lower 
values, shown in yellow, indicate sparse or stressed vegetation. 
Red colors on the OSA-VI map highlight areas of bare or exposed 
soil.

Figure 6: Reflectance maps of OSAVI of individual farmer fields in Zones H, I, and J.

http://dx.doi.org/10.19080/ARTOAJ.2024.28.556425
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Midseason Crop Health, N Management, and End-of-
Season Rice Grain Yield

Figure 7 shows the relationships between the designated 
midseason crop health as a function of NDVI and OSAVI and the 
final rice grain yield obtained at the end of the season. There was a 

linear increase in yield from low (OSAVI 0.544) to high (OSAVI 0.685) health as 
assessed by OSAVI. On the other hand, no statistically significant 
differences in rice yields were observed between the medium (NDVI 

0.874) and high (NDVI 0.874) crop health zones based on NDVI. However, 
medium and high-health zones had significantly higher yields 
than low (NDVI 0.725)-health zones.

Figure 7: Relationships between crop health as assessed by NDVI and OSAVI and grain yields. Columns of the same color and the same 
letters are not significantly different. Mean separations were calculated using Tukey’s stu-dentized range with an alpha of 0.05.

Soil Characterization

The upper layer of soil (0 - 25 cm) displays a prevalent sandy 
loam texture. Zone H exhibits the highest clay con-tent at 18.76% 
(Table 3). In contrast, Zone I shows the highest sand content at 
70.6%, a considerably more significant proportion compared 
to zones H and J. Across all zones, the soil demonstrates acidity. 
While there is no notable difference in pH levels between zones, 
there is a slight increase from 5.4 in Zone H to 5.9 in Zone J. 
Zone H inherently has higher fertility levels than Zones I and J, 
as evidenced by elevated levels of organic matter (OM), total N, 
and cation exchange capacity (CEC). Particularly noteworthy is 
Zone J, which exhibits significantly higher concentrations of plant-
available P, measuring 6.58 mg kg-1, in contrast to 5.08 mg kg-1 and 
2.32 mg kg-1 in Zones I and H, respectively.

Though initially not included in the research plan, soil 
properties have been naturally categorized into two groups 
based on N management systems, providing context for the 
study site background. Fields managed under UDP N revealed 
distinctive textural and fertility relationships. The UDP soils 
showed an average sand content of 65.2%, significantly higher 

than the 55% observed in non-UDP fields. In contrast, there was 
a reverse relationship in clay content, with non-UDP fields having 
a significantly higher percentage of clay (27.3%) than UDP fields 
(13.6%). While all soils had a sandy loam texture, the surfaces 
of fields under UDP management were noticeably coarser than 
their non-UDP counterparts, representing the sole distinctive 
fertility parameter between the two. The different N management 
systems could also be distinguished based on soil fertility. Non-
UDP-managed fields exhibited a significantly higher CEC level of 
10.22 compared to 8.18 cmol(+) kg⁻¹ in UDP fields, as outlined in 
(Table 3).

Crop health assessment

The NDVI values used to define crop health categories in UDP 
and non-UDP fields are presented in (Table 4). These are based on 
reflectance values obtained from UAS data collected at the booting 
stage of the rice crop, as shown in (Figure 5).

Extrapolating Yields from Plot to Field Levels 

The predictive equations for UDP and non-UDP fields are 
presented in (Figures 7a and 7b), respectively. These equations 
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reveal that OSAVI significantly predicts grain yield for UDP and 
non-UDP conditions, though the impact and the models’ predictive 
power differs. The equations suggest that OSAVI significantly 
predicts rice grain yield, with 51.5% of the variability explained 
for UDP and 75.5% for non-UDP.

Plot and Spatial Scale Yield Analysis

A total of 141 yield data points were collected from NDVI crop 
health plots, with 68 points from UDP plots and 73 points (Table 

5) from non-UDP plots. The data set was expanded to 324 yields 
(160 UDP and 131 non-UDP) points at the field level by applying 
spatial extrapolation using the Jenks natural breaks algorithm. 
At the plot scale, UDP plots’ interquartile range (middle 50% of 
yields) ranged between 5.55 and 7.78 mt ha-1, indicating a 2.23 mt 
ha⁻¹ difference (Figure 9). Conversely, non-UDP fields exhibited a 
broader interquartile range of 2.66 mt ha⁻¹, with a minimum of 
4.91 to a maximum of 7.57 mt ha⁻¹.

Table 4: Ranges of NDVI used for assigning crop health categories in UDP and non-UDP fields.

  UDP Non-UDP

Crop Health Min Mean Max Std Minimum Mean Maximum Std

Low 0.609 0.728 0.847 0.061 0.524 0.716 0.847 0.082

Medium 0.848 0.874 0.893 0.021 0.847 0.87 0.893 0.069

High 0.894 0.914 0.934 0.015 0.894 0.91 0.925 0.02

Table 5: Summary statistics of yield data from health plots and extrapolated spatial data of UDP and non-UDP fields.

N Management Assessment 
points Range Minimum Maximum Median Value Std. deviati-

onn Variance  CV 
(%)

Plot scale Assessment

UDP 68 7.32 3.27 10.59 6.77 6.67 1.58 2.5 23.7

Non-UDP 73 7.99 1.92 9.91 6.03 6.14 1.82 2.3 29.61

Spatial scale Assessment

UDP 160 2.4 6.32 8.72 7.38 7.37 0.49 0.24 6.67

Non-UDP 131 2.49 5.71 7.29 6.32 6.45 0.57 0.3 8.45

Figure 8: Linear regression of rice grain yield as a function of OSAVI (a) UDP and (b) non-UDP fields.
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Figure 9: Box-and-whisker plot showing variation in rice grain yields (mt ha-1) under UDP (n = 68) and non-UDP (n = 73) N management 
plots. The figure also shows each N management system’s median; Duncan means categories and upper. 

The descriptive statistics (Table 5) revealed a yield range 
for UDP of 7.32 mt ha⁻¹ with a minimum of 3.27 mt ha⁻¹ and a 
maximum of 0.59 mt ha⁻¹, but non-UDP plots had a more extensive 
range of 7.99 mt ha⁻¹ with a minimum of 1.92 mt ha⁻¹ and a 
maximum of 9.91 mt ha⁻¹. The non-UDP plot yields were relatively 
more dispersed than their UDP counterparts. UDP plots’ standard 

deviation (SD), variance, and coefficient of variation (CV) were 
1.58, 2.50, and 23.7%, respectively. The non-UDP plot yields had 
an SD of 1.82, a variance of 3.30, and a CV of 29.61%. The average 
grain yield from UDP plots was 6.67 mt ha-1, contrasting with 6.14 
mt ha-1 in non-UDP plots (Figure 10). Tukey’s HSD test indicates 
that the 11% difference is statistically significant at an alpha 0.05.

Figure 10: Comparative yield assessment of average rice grain yields from UDP and non-UDP plots. Bars with different letters significantly 
differ at 0.05 per Tukey’s studentized test.
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Field Scale Yield Analysis

In Figure 11, the interquartile range in the UDP fields was 
0.70 mt ha⁻¹, ranging from 7.05 to 7.75 mt ha⁻¹, compared to 
the interquartile range of 1.07 mt ha⁻¹ in the non-UDP data. The 
ranges in yields were substantially reduced in the field yield 
assessment (Table 5). It decreased by 4.92 mt kg-1 between UDP 
field and plot yields. A decrease of 5.5 kg ha-1 was observed in 
non-UDP management between plot and field-based assessments. 

The other dispersion variables also showed similar trends: SDs 
decreased by 1.58 mt ha-1 from plot to spatial field assessment 
under UDP management to 0.49 mt. ha-1 at the field scale, while 
non-UDP fields registered SDs of 1.82 mt ha-1 and 0.54 mt ha-

1, respectively. Variances and CVs showed the same decreasing 
trends from plot to field scales, as shown in (Table 5). There was 
a 17% reduction in CV in UDP plot scale yields to field scale level, 
while yield CV of non-UDP yield was reduced to 8.45% in non-UDP 
fields.

Figure 11: Box-and-whisker plot showing variation in rice grain yields (mt ha-1) under UDP (n = 160) and non-UDP (n = 131) N fields. The 
figure also shows each N management system’s median; Duncan means categories and upper and lower quartiles.

 Figure 12: Grain yields in UDP and non-UDP farmers’ fields. Bars with different letters significantly differ at 0.05 per Tukey’s studentized 
test.
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Scaling plot scale yields to spatial levels significantly reduced 
data variability. Initially, variances in plot scale da-ta for UDP and 
non-UDP were at 2.50 mt ha⁻¹ and 3.30 mt ha⁻¹, respectively, 
which decreased to 0.24 mt ha⁻¹ and 0.30 mt ha⁻¹ at the farmer 
field level, as shown in (Table 5). Correspondingly, the coefficients 
of variation for UDP and non-UDP plot-scale data, initially at 

23.07% and 29.96%, respectively, decreased to 6.7% and 8.45% at 
the farmer field scale. The calculated averages for rice grain yields 
in UDP and non-UDP fields were 7.37 mt ha⁻¹ and 6.45 mt ha⁻¹, as 
depicted in (Figure 12). According to Tukey’s standardized test, 
this 14% difference is statistically significant at the 0.05 level.

Figure 13: Predicted total rice grain yield in Zones H, I, and J producer fields as a function of N placement (UDP and non-UDP) systems.
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Rice Grain Yield Mapping

An important outcome of this research is the generation of 
high-resolution prediction digital maps illustrating the landscape 
patterns of rice production in the three zones (Figure 13). These 
rice grain yield maps are characterized by their high spatial 
resolution, geo-referencing, and uniform scales, which enable 
precise measurements and analysis. The scale of these maps allows 
for identifying field boundaries and other pertinent field features, 
providing a comprehensive overview of rice grain yield potential 
across the three intervention zones [62]. It also facilitates precise 
management and planning. Zone J has a notably higher average 
grain yield, achieving 7.17 mt ha-1 under UDP management 
compared to 6.42 mt ha-1 non-under UDP management (Table 6).

Table 6: Summary of rice productivity in Zones H, I, and J as a function 
of N management as assessed based on predicted yield data.

Zone UDP Non-UDP

Average grain yield

H 6.7ab† 5.95a

I 6.22b 5.82a

J 7.17a 6.42a

†Means followed by the same letter in a column are not significantly 
different at the 0.05 probability level based on Duncan’s multiple range 
test.

Discussion

The results of the physicochemical analysis affirmed the 
variable and depleted nature of soils in the study zone. These 
results support the claim by [52,53] that soil fertility poses a 
significant challenge to agricultural production in the West African 
Savanna. The low P content and organic matter levels agree with 
the findings of [54], who reported soils’ low overall fertility status 
in the Tono irrigation scheme.

In this study, UAS technology was utilized to evaluate the 
impact of different N placement strategies on rice grain yield. The 
rationale for employing this aerial assessment method is diverse. 
Still, the primary advantages include: (1) UAS captures high-
resolution images that offer detailed spatial information, allowing 
for precise assessment of N distribution and crop health [36]. (2) 
The system detects small-scale variability within fields, enhancing 
the understanding of N placement effectiveness [55] and enabling 
the prediction and mapping of rice yields [56], a critical objective 
of this study. (3) The multispectral imaging capabilities of the UAS 
system permit the calculation of indices such as NDVI and OSAVI, 
which are sensitive to N status and plant health. (4) Additionally, 
UAS technology reduces the need for extensive manual labor in 
data collection [57] because it covers large fields at a time [58]. 

According to [59], the booting stage of the rice crop at which 
the aerial survey was carried out marks the rice plant’s nutrient 
growth peak, featuring the highest leaf area index. The high leaf 

area index reflects the plant’s maximal photosynthetic capacity and 
yield potential [60], pertinent to one of the addressed objectives. 
Orthomosaics from the captured imagery depicted rice fields in 
the three intervention zones. These orthomosaics rectify heights, 
tilts, topographic relief, and lens distortions, ensuring geometric 
accuracy [61]. The high spatial resolution, geo-referencing, and 
uniform scales of the map enable precise measurements and 
analysis [62]. NDVI raster maps derived from these orthomosaics 
facilitated the identification of crop health plots as a function of 
UDP and non-UDP. The categorized NDVI means for UDP fields are 
0.728 for low health, 0.874 for medium health, and 0.914 for high 
health. The non-UDP mean crop health equivalents were 0.716 
for low, 0.870 for medium, and 0.910 for high health plots. In a 
previous study, [63] mapped rice crop health using NDVI ranges, 
defining very good health as 0.721 - 0.920, good health as 0.421 
- 0.720, normal health as 0.221 – 0.42, and poor health as 0.110 
- 0.220.

The end-of-season assessment of rice grain yield significantly 
correlated with assigned crop health (r = 0.68, significant at p<0.05). 
However, this correlation weakened at elevated NDVI levels. This 
finding aligns with [64], who observed a non-linear relationship 
among NDVI, crop health, and end-of-season yields. According 
to [65], NDVI tends to saturate asymptotically with increasing 
reflectance in dense canopies, leading to the underestimation of 
rice yields in areas with high vegetative growth, as observed by 
[66]. Nevertheless, this study demonstrated that NDVI remained 
sensitive enough to differentiate crop health areas and was a 
distinguishing metric between N management systems.

In contrast, OSAVI exhibited a consistent linear relationship 
(r = 0.72 significant at p<0.05) with crop health throughout the 
spectrum, as noted by [67]. This vegetation index then functioned 
as a proxy for forecasting end-of-season rice grain yields based on 
mid-season reflectance. Consequently, akin to a prior study where 
[68] employed linear regression models to forecast rice yield using 
OSAVI, we leveraged the linear correlation association between 
OSAVI derived from a single midseason reflectance assessment to 
extrapolate plot-scale rice yields to spatial dimensions. 

In this study, the innovative integration of multiple vegetation 
indices, NDVI and OSAVI, epitomizes the frontier of agricultural 
monitoring and management. NDVI is renowned for identifying 
crop health through sensitivity to vegetation density, chlorophyll 
concentration, and vigor. OSAVI is also distinguished by its 
robustness in reducing soil background effects. In comparing 
multiple vegetation indices for rice yield estimation, OSAVI 
[69,70] had a slightly better correlation with rice yield than NDVI, 
especially in areas with low vegetation. The soil adjustment factor 
in OSAVI helped reduce the noise caused by soil reflectance, 
leading to more accurate yield prediction. A simi-lar study in 
Southeast Asia [71] suggested that NDVI and OSAVI provide 
more stable and reliable predictions in heterogeneous fields with 
varying soil conditions. In this study, the creative use of NDVI and 
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OSAVI leverages the strengths of each index: NDVI for real-time 
crop health monitoring and OSAVI for accurate yield predictions.

This study also leveraged the innovative computational 
capabilities of the Jenks natural breaks classification algorithm 
[49] to optimize the classification of OSAVI values from rice plots, 
thereby enhancing yield predictions and their extrapolation to 
spatial dimensions. Renowned for its robustness in handling 
spatial data distribution, this classification system effectively 
organizes data into distinct classes, minimizing variances within 
classes while maximizing differences between them, as noted 
by [72]. This ensures that the classification reflects true natural 
groupings within the data [73], highlighting the algorithm’s 
utility in capturing yield variation and emphasizing its value in 
agricultural planning and management. [74] used this method to 
classify crop yields and found it superior to other classification 
methods in terms of accurately reflecting the spatial variability of 
crop yields. Using this classification system on the high-resolution 
data captured by UAS technology, the accuracy and variability of 
predicted rice grain yields were significantly enhanced, leading to 
improved data interpretation and visualization, as illustrated in 
(Figure 12).

Linear regressions were established between OSAVI and 
rice yield as a function of N placement. The coefficients of 
determination, R2 for the prediction equations, were 0.5152 
and 0.7555 for UDP and non-UDP plots, respectively. The 
aggregation of extrapolated yields in the four Jenks grouping of 
each field constituted the potential or predicted rice grain yield 
for the entire field on the spatial scale. This approach allowed 
for the prediction, subsequent mapping, and generation of a 
realistic, spatially meaningful predicted potential rice yield map 
for the intervention zones. This visual tool can be essential to 
policymakers, researchers, and farmers, helping them quickly 
grasp complex spatial data and make informed decisions before the 
end of the growing season. As highlighted by [75], the assessment 
scale is crucial in determining crop yield variability. Establishing 
a connection between plot-scale data and extrapolated spatial 
data is also essential for comprehending and predicting trends, 
patterns, and variations in crop yields within fields. Additionally, 
considering yield variability at multiple scales is pertinent for 
modeling, predicting, and mapping, a key study objective for this 
study.

Following the recommendation of [76], we utilized summary 
statistics and the box-and-whisker plot, a graphical representation 
depicting the distribution of a dataset. This approach effectively 
illustrated the significant dependence of yield variability on the 
evaluation scale. Two significant observations were made regarding 
grain yield structure and metrics at the plot and spatial data 
levels. Firstly, it was noted that the relationships among different 
metrics remained relatively consistent with those observed in the 
analysis of plot-scale yields. Secondly, the transition from plot-
scale data to spatial levels substantially reduced data variability 

and enhanced data quality. It improved the data’s discriminatory 
capacity between N placement alternatives on rice yield, which is 
the second primary objective of the study.

While data generated at both plot and spatial scales exhibited 
the same relationships and trends, the upscaling process refined 
the assessment data by reducing standard deviations, variance, 
and coefficients of variation (CVs). As indicated by [77], the 
success of spatial assessment hinges on the size and total number 
of samples. In this study, augmenting the sample size from 141 plot 
yields (68 UDP and 73 non-UDP plots) (Table 5) to 291 (160 UDP 
and 131 non-UDP) (Table 6) following the Jenks natural breaks 
grouping led to an improved data distribution and enhanced 
discrimination assessment of N placement alternatives.

On UDP plots, grain yields ranged from a minimum of 3.27 
to a maximum of 10.59 mt ha-1 with a range of 7.32 mt ha-1 but 
narrowed to a minimum yield of 6.32 to a maximum of 8.72mt 
ha-1, a range of 2.4 mt ha-1 at the spatial scale. Grain yield from 
UDP plots exceeded their non-UDP counterparts by 0.69%, and 
at the field scale, UDP outperformed non-UDP by 0.84%. Similar 
relationships were obtained by [78,79] in their rice yield-N 
placement strategies investigations in Northern Ghana and 
Southern Bangladesh, respectively.

The research produced accurate data and utilized 
straightforward spatial analysis to illustrate, predict, and map 
the end-of-season rice grain yield. The maps illustrate rice yield’s 
spatial distribution and variability across the three intervention 
zones, providing insights into landscape-level production patterns. 
The maps are created with high spatial resolution, allowing detailed 
visualization of yield patterns across the landscape. These not 
only facilitate a detailed examination of the spatial variability in 
rice yield but also support targeted agricultural interventions and 
re-source management by highlighting areas with different yield 
potentials. A thorough examination of the anticipated yield chart 
(Figure 12), corroborated by a yield analysis (Table 6), revealed 
that zone J possessed the highest yield potential, averaging 7.17 
metric tons per hectare. This yield is notably superior compared 
to zones H and I. 

The observed yield distribution projected by the study 
corresponds with the soil fertility patterns noted during the initial 
physicochemical assessment of the project area. The P content was 
prominent among the fertility indicators, affecting the rice grain 
yield after fulfilling the N requirement. This finding echoes a similar 
study conducted in Pakistan [80], where applying 90 kilograms of 
P205 led to a 29% increase in paddy rice yield compared to the 
control once the N levels were adequate. Furthermore, Pearson 
correlation analysis demonstrated a significant link between P 
and rice grain yield (r = 0.74, significant at 0.05). In contrast, the 
high sand content (70.6%) in Zone I is likely re-sponsible for the 
reduced grain yield observed, which could adversely affect the 
soil’s water and nutrient dynamics.
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Conclusion

This study employed Unmanned Aerial System (UAS)-derived 
data to create reflectance orthomosaics of NDVI and OSAVI. at 
the booting stage of the rice crop. Three progressive health plots 
were identified in UDP and non-UDP N placement rice fields using 
NDVI. While a linear correlation was observed between NDVI and 
crop health, its relationship with end-of-season rice grain yield 
was nonlinear. In contrast, OSAVI exhibited linear correlations 
with crop health and end-of-year yields, establishing it as the 
preferred end-of-season yield predictor. In addition, OSAVI pro-
vided more suitable and reliable predictions in heterogeneous 
fields with varying soil conditions and was therefore utilized as a 
suitable index to extrapolate plot yield data to spatial dimensions 
through linear regression.

The OSAVI data in the linear equation were generated from 
distinct natural homogeneous groups identified by the Jenks 
natural breaks algorithm for each farmer’s field. Aggregating the 
four natural break yields constituted the predicted average rice 
yield for the respective field, generating spatially meaningful 
predicted yields for each zone. This process produced a high-
resolution, practical digital spatial yield map depicting rice 
distribution and productivity for each zone. The yield data 
analysis from plot-level and spatial scale assessments involved 
summary statistics and plot-scale analyses. Although yields 
from both scales demonstrated similar relationships and trends, 
upscaling plot data to spatial dimensions refined the assessment 
data by reducing standard deviations, variances, and coefficients 
of variation.

Assessing the impact of N placement at the plot scale 
highlighted the superiority of UDP-N placement over non-UDP 
N management by 9.9%, equivalent to 0.6 mt ha⁻¹. In spatial 
assessment data, UDP field yields surpassed on-UDP counterparts, 
outperforming non-UDP by 14.3%, resulting in a yield differential 
of 0.92 mt ha⁻¹. This research has developed a concrete protocol 
for predicting and producing high-resolution maps of rice yield, 
which can be analogous to field mapping, utilizing midseason crop 
reflectance data generated from the UAS technology.
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