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Introduction
Type II Diabetes (T2D) is a complex disease that is 

influenced by environmental factors such as diet and life style 
as well as genetic variations that result in deviations in gene 
expression. Recent genome-wide association studies (GWAS) 
have established the correlation of more than 70 genetic variants 
(Single nucleotide polymorphisms or SNPs) with susceptibility 
to T2D [1,2]. Using highly efficient RNA sequencing (RNA-Seq) 
approach, it is now possible to comprehensively profile the 
transcriptome of the islets of Langerhans or individual β cells 
to better understand how these environmental factors and 
SNPs contribute to the pathogenesis of type II Diabetes. Next 
generation sequencing (NGS) technology has revolutionized the 
field of transcriptomics. RNA-seq is the current gold standard 
which has overcome the short comings of microarray analysis by 
extending its range of detection to low expressed genes, spliced 
variants and novel transcripts [3,4]. 

This technique is now being applied to the studies of islet 
biology and the understanding of T2D pathogenesis. Such studies 
confirmed some of the known characters such as signature gene 
expression of GCG (glucagon), DPP4 (Dipeptidyl peptidase 4) 
and GC (Vitamin D-binding protein) in α cells. Also it provided 
information of transcriptome profiling in rare endocrine cell 
type such as γ and δ cells. GHSR (Growth hormone secretagogue 
receptor) was specifically expressed in δ cells and γ cell that also 
express genes such as SERTM1 (serine rich and transmembrane 
domain containing 1) ABCC9 (ATP binding cassette subfamily 
C member 9) and SLIT (slit guidance ligand). Other interesting 
findings include sub clustering within α, β and acinar cells. For 
example, a small subset of α cell expressing more proliferative 
genes was identified and a group of acinar cells expressing more 
inflammatory related genes were separate from the others.

Furthermore, new genes correlated with T2D were also 
identified in a cell-specific manner. FXYD2 (FXYD domain  

 
containing ion transport regulator 2) encodes a gamma subunit 
of an Na, K-ATPase was confirmed to have a low expression 
only in T2D pancreatic β cells. Other genes upregulated in T2D 
β cells includes GPD2 (glycerol-3-phosphate dehydrogenase 
2) and LEPROTL1 (Leptin receptor overlapping transcript-like 
1). Negative regulators of glucose stimulated insulin secretion 
(GSIS) - RGS4 (regulator of G-Protein signaling 4) and CHRM3 
(cholinergic receptor muscarinic 3)- were enriched in α 
cells. WFS1 (Wolframin ER transmembrane glycoprotein) is 
significantly decreased in T2D α cells [5].

Direct sequencing on dispersed or FACS sorted single cells 
have been developed and provided new understanding on 
the transcriptome differences among the cell types in islets 
of Langerhans. A recent study performed single-cell RNA-seq 
analysis on 609 non-diabetics and 883 T2D α, β, δ and PP cells. 
The authors identified 245 T2D related genes with 28% of which 
have no previously known functions. The authors also compared 
mouse α and β cells versus humans and found similar expression 
profiles. This study provided one of the first databases on single-
cell transcriptomes of α, β, δ and PP cells that can be used to 
study functions of the newly identified genes [6].

In another study where RNA-seq was performed on FACS 
sorted endocrine cells using HIC1-2B4, a pan-endocrine 
marker, four different transcriptome profiles are identified 
among β cells. These four subsets are separated based on 
two markers: CD9 and ST8SIA1 (alpha-N-acetylneuraminide 
alpha-2,8-sialyltransferase), and named β1-4 as CD9-ST8SIA1-, 
CD9+ST8SIA1-, CD9-ST8SIA1+ and CD9+ST8SIA1+ respectively. 
RNA-seq on these 4 subsets of β cells indicated shared genes 
such as PDX1 (pancreatic and duodenal homeobox 1), INS 
(insulin) and MAFA (MAF BZIP transcription factor A) as well as 
unique genes such as HCN1 (hyperpolarization activated cyclic 
nucleotide gated potassium channel 1) in β 1/2 cells. In healthy 
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human islets, β1 subset has highest percentage among all β cells 
followed by β2, β3, and β4 subgroup. Importantly, among type 
2 diabetic patients, this composition pattern was disrupted and 
particularly, the ST8SIA1+ β cells (β3 and β4) are abnormally 
high. 

The author also provide evidence showing β3 and β4 
subsets are less responsive to glucose stimulation, indicating 
its potential relevance to type 2 diabetes [7]. This finding is 
supported by another study where islets from six health subjects 
and four T2D patients were sequenced at single cell level and five 
different expression clusters were identified according to their 
transcriptome and different expression levels of RBP4 (retinol 
binding protein 4), FFAR4/GRP120 (free fatty acid receptor 4), 
ID1, ID2, and ID3 (inhibitor Of DNA binding, HLH protein) [5]. 
Using RNA-seq, we recently performed transcriptome analysis 
of mouse islets fed high fat diet (HFD) vs. normal chow diet 
(NC). Our study indicated that HFD caused enrichment of PI3K/
AKT/mTOR pathway genes that contribute to adaptive increase 
in growth and proliferation in β cells in response to HFD insult 
(Figure 1A).

Figures 1A & 1B:  GSEA (Gene set enrichment Analysis) 
analysis showing heat map and enrichment plot of A. genes in 
PI3k/AKT/mTOR pathway enriched by HFD in islets of Wild type 
mice. B. Unfolded protein responsegenes enriched by AKT1 
deletion. NC-Normal chow, HFD- High fat diet, A1KO-AKT1 
knock out.

Using mouse models lacking PTEN in the islets where PI3K/
AKT signal is constitutively active, we have shown previously 
that this pathway is important for maintaining the mass of the 
islet β cells [8,9]. Furthermore, we showed that this ability of 
PTEN/PI3K signal to control β cell growth is dependent on 
their ability to regulate β cell senescence and how it interacts 
with the mesenchymal cells that supports the growth of islets 

[10,11]. Moreover, our recent study discovered AKT1 deficiency 
increases the UPR (unfolded protein response) signaling in β 
cell which potentially poised β cell to apoptosis caused by high 
fat diet (Figure 1B). Together, these studies suggest PI3K/AKT 
signaling is one of the key signaling in β cells that contributes to 
its growth and cell survival.

Our finding is supported by another similar RNA-Seq 
experiment in cultured human islets treated with palmitic 
acid for 48 hours [12]. The transcriptome profile indicated 
strong metabolic stress upon treatment and how β cell failure 
may have happened in response to this stress. Among the 
1,325 genes modified by palmitate treatment, genes involved 
in fatty acid metabolism and endoplasmic reticulum (ER) 
stress signaling are highly enriched, including 11 out of 59T2D 
candidate genes. Whether these genes are also altered by loss 
of AKT or upregulation of PTEN remains to be elucidated. Β cell 
transcription factors such as PDX1, MAFA, MAFB (MAF BZIP 
transcription factor B), NEUROD1 (Neuronal Differentiation 1), 
PAX4 (Paired Box 4) and GATA6 (GATA Binding Protein 6) were 
found to be repressed by this treatment.

Conclusion
In summary, the use of RNA-Seq approaches has provided 

new direction for diabetes research and allowed researcher 
to develop novel hypothesis to explore the pathogenesis of 
diabetes. The expression profile analysis also allowed more 
detailed classification of β cell to be identified and linked to T2D. 
Using the combination of RNA-seq with molecular pathogenesis 
analysis, we and have started to unveil the molecular mechanism 
for how HFD contributing to the pathogenesis of T2D.
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