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Introduction
Although useful in clinical practice, metrics proposed for 

continuous glucose monitoring (CGM) in diabetes control [1] 
such as mean glucose, SD of glucose, and time or percentage of 
time spent in hyper- and hypoglycemia, are not appropriate to 
reveal the internal dynamics of CGM time series. These metrics 
are derived from linear models of glucose analysis and mostly 
fail to characterize glucose dynamics [2]. As a matter of fact, 
the variation of blood glucose levels is not linear, and glucose 
profiles contain nonlinear, non-stationary components [3]. 
Several nonlinear analytical methods have been recently applied 
to quantify the complexity of blood glucose signals, including 
detrended fluctuation analysis (DFA) [4-11], Poincaré plots 
(PCP) and various entropy measures [12-15].

These studies show that the complexity of blood glucose 
variations is lower in patients with diabetes as compared 
with nondiabetic subjects. Beyond traditional estimates of 
glycemia and glycemic variability, complexity measures target 
the glucoregulatory system and have the potential to assess 
how treatment modalities can modify the dynamics of glucose. 
The clinical importance of the current dynamical measures, 
however, it is not yet clear. And it is neither known whether the  

 
complexity measures are affected by the diabetes therapy nor 
have correlations been examined between various dynamical 
indices. 

Quantification of Glucose Dynamics and Association 
with Glycemic Control Measures

Table 1 summarizes the measures of glucose dynamics 
recently used in studies on hyperglycemia.

Detrended fluctuation analysis
The Detrended fluctuation analysis (DFA) is useful to assess 

long-range correlations in time series. The use of this method 
yields the DFA scaling exponent α that reflects the degree of 
complexity. Alpha values <1.5 indicate long-range negatively and 
α>1.5 positively correlated fluctuation. Churruca et al. [4] and 
Ogata et al. [5] reported a loss of complexity in glucose profiles 
of patients with the metabolic syndrome and with diabetes, e.g., 
and the scaling exponents α were higher than in healthy persons. 
An exploratory study conducted by Khovanova et al. [6] Thomas 
et al. [7] provided a dynamical definition of glycemic stability 
and supported the potential of DFA for time series analysis in 
diabetic patients.
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Abstract

Blood glucose control is a fundamental element in preventing micro- and macrovascular complications of diabetes. Many patients with 
diabetes can improve glycemic control by use of continuous glucose monitoring. Analysis of continuously monitored data further allows glucose 
dysregulation to reveal early in the development of diabetes or the metabolic syndrome and response to therapeutic intervention. But traditional 
measures of glycemia currently used in clinical practice are insufficient to characterize the various aspects of glucose profile complexity that 
may be important in different states of dysglycemia and the design of optimal antidiabetes therapy. This article discusses several dynamical 
complexity measures, their association with metabolic characteristics, and possible implications for glucose control.
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Table 1: Measures used for quantification of glucose dynamics in 
diabetes IGT, Impaired glucose tolerance ; MetS, Metabolic syndrome; 
T1D, Type 1 diabetes; T2D, Type 2 diabetes.

Measure Patients Reference

Detrended fluctuation analysis

Scaling exponent 
α1, α2

T1D/T2D  [5]

IGT/T2D  [8]

T1D/T2D  [6]

T2D  [11]

T1D  [14]

Scaling exponent α

MetS/T2D  [4]

High risk T2D  [9]

T1D/T2D  [7]

T2D  [10]

T1D  [18]

Poincaré plots

Fitting ellipse SD1 
and SD2

T1D  [13]

T1D  [14]

Area and shape of 
the fitting ellipse AFE 

and SFE
T1D  [13]

Entropy

Approximate entropy 
ApEn T2D  [17]

Sample entropy 
SampEn T1D  [18]

Multi scale entropy 
MSE

T2D  [20]

T1D/T2D  [21]

Yamamoto et al. [8] showed that the loss of glucose profile 
complexity stretched from the short-range (α1) to the long-range 
scaling exponent (α2) with the worsening glycemia. The results 
of these studies led to the conclusion that changes in glucose 
dynamics may already occur before full-blown hyperglycemia 
develops. Indeed, Varela´s group [9,10] has recently 
demonstrated that DFA α was capable of indicating the risk of 
developing T2D. But it remains unknown whether dynamical 
alterations are primarily dependent on exogenous factors, e.g., 
antihyperglycemics, or endogenous factors such as the residual 
ß-cell function and insulin resistance. A retrospective analysis 
by Kohnert et al. [11] in patients with T2D found that the loss of 
dynamical complexity relates to the decline in ß-cell reserve and 
increasing glycemic variability.

Poincaré plot analysis 
The standard Poincaré plot (PCP) used to visualize the 

non-linear pattern of glucose dynamics is a scattergram 
constructed by locating data points from the CGM time series 
[12,13]. Quantification of the plots is done using SD1 and SD2 
statistics, where the minor axis (SD1) comprises the data points 
perpendicular to the line of identity and SD2 those dispersed 
along the major axis of the fitting ellipse. Crenier [13] has 
validated these standard measures for the geometry of PCP in 

T1D and introduced the new metrics area (AFE) and shape of 
the fitting ellipse (SFE). As he reported, all the metrics of the PCP 
geometry were higher in diabetic subjects than in the healthy 
control group. Worthy of note, these parameters decreased upon 
continuous subcutaneous insulin infusion therapy, indicating 
that they were modifiable by exogenous factors. More recently, 
Garcia Maset et al. [14] have reported that the loss of complexity 
in glucose time series of pediatric patients with T1D, measured 
as DFA α and PCP parameters, was correlated with increased 
glycemic variability.

Entropy measures
In addition to the previous algorithms the complexity of 

glucose time series can be accessed through several other 
methods, including approximate entropy (ApEn) and sample 
entropy (SampEn) [15,16]. Both require for computation the 
three parameters length of the data segment (m), similarity 
criterion (r) and length of the data (N). However, a consensus is 
still lacking about the proper selection of the parameters. Using 
ApEn, Lytrivi & Crenier [17] found an increase of glucose profile 
complexity in T1D upon switching therapy from multiple daily 
insulin injections to continuous subcutaneous insulin infusion. 
The ApEn increase was inversely related with the DFA exponent α 
and reduced glycemic variability, indicating that therapy closer to 
physiological insulin secretion can improve glycemic complexity. 
SampEn is a modification of ApEn but has the advantage of being 
less sensitive to the step length within the time series [15]. 
Regarding the analysis of glucose complexity, studies on patients 
with T1D indicated that SampEn was associated with insulin 
resistance and with time in hypoglycemia (<3.9 mol/l) [18]. 

Since its introduction [19] multiscale entropy (MSE) 
represents the predominating method to characterize the 
complexity of physiological signals [19]. The MSE approach is 
based on sample entropy computation over a range of timescales 
and has been proposed for assessment of glucose dynamics. 
Costa et al. [20] introduced the term “dynamical geometry” to set 
the framework for the analysis of blood glucose time series using 
computation methods. Using the MSE approach, recent studies 
have shown that the temporal structure of glucose fluctuations 
is more complex in nondiabetic subjects than in those with T2D. 
One study reported a significant correlation between the MSE 
index with conventional measures of glycemia [20], i.e., glycated 
hemoglobin A1c (HbA1c) and mean blood glucose. Chen et al. 
[21] identified no such correlations in their study, including 
a mixed cohort of T1D and T2D patients. In a preliminary 
investigation, we observed no significant association of the MSE 
index with mean glucose and merely a weak correlation with 
HbA1c (Kohnert et al. unpublished).

Modifiable and Non-Modifiable Factors Associated 
with Glucose Dynamics

The internal structures of CGM time series imply a complex 
dynamic process regulated by a set of interactions between 
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various hormones and metabolic components. And an important 
question is whether individuals within a subgroup of diabetes 
have their dynamic structure. As shown by Rahaghi et al. [22] 
and confirmed in several studies, time-scale analysis does 
not reveal major differences between diabetes types, even 
though they do show lower glucose complexity compared with 
nondiabetic subjects. Insulin resistance is expected to lower 
glucose dynamics, especially in T2D patients not treated with 
insulin injections, and significant correlation between insulin 
resistance and body mass index has been reported [18] However, 
insulin sensitivity is modifiable either by physical exercise 
or administration of insulin sensitizers. Other modifiable 
factors include meal intake and enteral feeding, which alter the 
individual dynamic signature [22]. Presumably, any therapy, 
approaching the physiological glucose regulation, is capable of 
shifting the glucose dynamics toward more healthy conditions, as 
demonstrated in patients with T1D when switching the therapy 
from daily insulin injections to insulin infusion [17]. Assessing 
the effects of non-modifiable factors such as age and diabetes 
duration is complicated by the fact that close correlations exist 
between aging, obesity, and insulin resistance.

Implications for Diabetes Control
Whereas the glycemic variability characterizes the 

magnitude of the time series, the structural variability defines 
the complexity of the time series. Both parameters represent 
two complementary categories [23]. Despite the paucity of 
clinical data, the use of measures of blood glucose dynamics 
appears to have a considerable potential in diabetes control. 
Current study results consistently show that glucose complexity 
decreases during progression from early glucoregulatory 
dysfunctions to established diabetes. Thus, glucose series 
complexity measures may be both beneficial in detecting the 
malfunctions in the glucoregulatory system before the blood 
glucose reaches pathological levels [9] and in characterizing the 
diabetes stability after therapeutic intervention. The influence 
of antidiabetic agents is, however, as yet unknown. 

Clinical studies will need to be conducted to clarify 
whether therapy modalities, beyond merely normalizing blood 
glucose levels can reverse multiscale dynamics toward those of 
nondiabetic subjects. Consequently, the glucoregulatory system 
could be the future target for individualized diabetes therapy to 
restore healthy multiscale dynamics. Furthermore, it remains an 
important goal to find out whether glucose complexity measures 
are useful as markers for the predisposition or the development 
of late diabetes complications. Dynamic indices, measuring 
glucose dynamics on different time scales, e.g., multiscale 
entropy, appear to be preferable for diabetes control. There is no 
doubt that blood glucose dynamics is a fundamental concept in 
the future management of diabetes.
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