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Introduction
Type 2 Diabetes Mellitus

Type 2 Diabetes Mellitus is a multifactorial disorder 
that occurs because of a complex interplay between genetic 
predisposition and lifestyle choices as the two primary causative 
factors. It is characterized by chronic inflammation, insulin 
resistance, oxidative stress and hyperglycemia. Chronic state 
of hyperglycemia often results in the formation of Advanced 
Glycation End products, hereby abbreviated as AGEs via the 
infamous Maillard reaction. The Maillard reaction is defined 
as formation of adducts between reactive carbonyls in glucose, 
fructose, and their metabolites, such as methylglyoxal or 
deoxyglucosone, with amino groups in protein, DNA, and lipids. 
This reaction has been implicated as a root cause of several evils 
in diabetes associated micro- and macrovascular complications 
[1]. 

Advanced Glycation End Products are frequently referred 
to as glycotoxins; whose formation is induced by nonenzymatic 
glycemic and oxidative stress reactions [2]. These are a 
heterogenous group of biological entities formed via a 
nonenzymatic post-translational modification reaction between 
reducing sugars and the amino groups of proteins, nucleic acids 
and lipids [3]. AGEs are formed by the Maillard reaction was first  

 
described in 1912, by French scientist Louis Camille Maillard. 
This is a multistep process, initiated by the reversible reaction 
between the carbonyl group of a reducing sugar and terminal 
amino group of a protein, lipid or nucleic acid, resulting in the 
formation of a Schiff base. These further undergo irreversible 
rearrangements to form more stable ketoamines hereby referred 
to as the Amadori products; a putative example of which is 
HbA1c.These products undertake further structural rejoinders 
via oxidation, condensation, dehydration over the span of days 
to weeks and give way to irreversibly cross-linked, fluorescent 
microprotein derivatives known as AGEs [4,5]. These products 
persist in diabetic vessels for long time despite improved 
glycemic control and undergo slow degradation Figure 1. 

Figure 1: Vascular complications of Type 2 Diabetes Mellitus.
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Abstract

Type 2 Diabetes Mellitus is a multifactorial disease marked by chronic hyperglycemia and insulin resistance. Its associated vascular 
complications are a major contributor to mortality globally. These vascular complications are frequently implicated to be an offshoot of 
high levels of advanced glycation end products which are produced due to a persistent hyperglycemic and oxidative stress state. This review 
summarizes the role of advanced glycation end products in the pathogenesis of micro- and macrovascular complications of type 2 diabetes 
mellitus.
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Pathophysiological role of AGEs in vascular 
complications in Diabetes

In the context of type 2 diabetes mellitus, accelerated 
formation and accumulation of AGEs has been implicated in 
the onset of diabetic microvascular complications which are 
summarised below.

Diabetic retinopathy: Diabetic Retinopathy is one of the 
foremost microvascular complications in T2DM and the leading 
cause for acquired blindness in individuals of abstruse age/young 
adults. It starts with retinal microvascular cells being damaged 
due to hyperglycemia. Subsequent loss of pericytes leads to 
enhanced vascular permeability which leads to microvascular 
occlusion in the retina [6,7]. AGEs have been implicated in the 
onset and progression of microvascular disease in DM. Levels 
of endothelial cell specific mitogen VEGF in ocular fluid have 
been reported in various clinical studies to positively correlate 
with the amount of neovascularization in diabetic retinopathy 
[8]. AGEs accumulate in retinal pericytes during diabetes and 
adversely affect their function and survival [9]. Various studies 
have shown that AGEs accumulation causes apoptosis of retinal 
pericytes and its interaction with RAGE induces the expression 
of VEGF, DNA synthesis and angiogenesis which are all regarded 
as hallmarks of proliferative retinopathy [10]. AGE induced 
damage to pericytes predisposes vessels to angiogenesis, 
thrombogenesis and endothelial cell injury; which results in an 
overt clinical expression of diabetic retinopathy increased [11]. 
AGEs have been shown to stimulate angiogenesis by inducing 
growth and tube formation of microvascular endothelial cells via 
interaction with RAGE and subsequent VEGF expression [12]. 
AGEs have also demonstrated an enhanced leukocyte adhesion 
to cultured retinal microvascular endothelial cells by induction 
of the expression of ICAM-1 (intracellular cell adhesion 
molecule-1), which leads to leukostasis and blood-retinal barrier 
dysfunction as shown in various in vivo experiments [13-15]. 

Diabetic nephropathy: Nephropathy is one of the most 
common complications of T2DM. Increased glomerular basement 
membrane thickness, a decreased glomerular filtration rate, and 
an expanded mesangial volume are regarded as hallmarks of 
nephropathy [16]. Diabetes induced alterations in the physical 
and biochemical properties of the glomerular basement 
membrane results in proteinuria. AGEs have been implicated in 
the disruption of glomerular homeostasis as their accumulation 
in mesangial cells induces apoptosis and inhibits cell growth. 
Mesangial cells represent a key anatomical component of 
glomerulus, providing structural support for capillary tufts and 
modulating glomerular filtration via smooth muscle activity 
[17,18]. Secretion of VEGF and monocyte chemoattractant 
protein-1 (MCP-1) is also stimulated by AGEs, which results in 
hyperfiltration and microalbuminuria thus leading to the early 
phase of diabetic nephropathy [10]. Furthermore, serum levels 
of AGEs were also elevated in diabetic patients with nephropathy 
than in diabetic patients without clinically evident nephropathy 
[19]. These findings are suggestive of the fact that AGEs impact 

mesangial cells in the same manner as they affect pericytes 
and vascular wall damage is the stepping stone for all diabetic 
vascular complications. Over expression of RAGE in diabetic 
mice resulted in progressive glomerulosclerosis and renal 
dysfunction where as inactivation of RAGE in a mouse model of 
diabetic nephropathy suppressed kidney enlargement, increased 
glomerular cell number, induced mesangial expansion, advanced 
glomerulosclerosis, increased albuminuria, and increased serum 
creatinine levels compared with wild-type diabetic mice [20,21]. 
In the latter study, low molecular weight heparin treatment 
specifically prevented albuminuria, increased glomerular cell 
number, mesangial expansion, and glomerulosclerosis by acting 
as an antagonist to RAGE [20]. Recent studies have shown that 
RAS (renin-angiotensin system) inhibitors such as telmisartan 
or olmesartan can potentially inhibit AGEs evoked inflammatory 
responses in endothelial cells by downregulating RAGE 
expression. There by potentially preventing of diabetic vascular 
complications [22,23].

Diabetic neuropathy: Diabetes Mellitus is a key cause 
of peripheral neuropathy, which typically presents as 
distal symmetrical polyneuropathy [19]. Key pathological 
developments in human diabetic nerves include fiber loss, 
axonal degeneration and demyelination, and microangiopathic 
changes [24,25]. AGEs have been detected in sural, peroneal, 
and saphenous nerves of human diabetic subjects in the 
perineurium, endothelial cells and pericytes of endoneurial 
microvessels as well as in myelinated and unmyelinated fibers 
[26]. Accumulation of AGEs in the nerves of diabetes patients 
and the inhibition of AGEs formation by anti-glycation agents 
improved the neuropathic changes suffered by experimental 
diabetic rat model [27]. However, the pathologic mechanisms 
behind the actions of AGEs in diabetic neuropathy are poorly 
understood. AGEs have been demonstrated to affect the viability, 
replication, and the production of proinflammatory cytokines 
such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-
1β) in Schwann cells [28]. This toxic behavior of AGEs has also 
been observed in neuronal, vascular, and mesangial cells [10,29]. 

Cardiovascular diseases
AGE modifications of proteins frequently involve cross 

linking of proteins which has been implicated in vascular and 
myocardial stiffness and deterioration of structural integrity and 
physiological functioning of various organ systems in the context 
of isolated systolic hypertension and diastolic heart failure [30]. 
Several in vitro, in vivo and epidemiological studies have declared 
atherosclerosis to be an intrinsically inflammatory disease of 
the heart [31]. Activation of the AGE-RAGE pathway leads to 
the generation of oxidative stress which subsequently activates 
NF-kB signaling pathway in vascular wall cells. This sequence of 
events promotes atherosclerosis and inflammation promoting 
genes’ expression which contributes to the development 
and progression of cardiovascular complications in diabetes 
[11,32,33]. Nitric oxide (NO) is a potent endogenous vasodilator 
having anti-inflammatory, anti-thrombotic anti-proliferative 
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and anti-arthrogenic properties [34]. AGEs have been shown 
to inhibit endothelial NO synthase and concomitantly stimulate 
the production of peroxynitrite; a reactive intermediate and 
toxic product of NO’s reaction with superoxide anion. AGE-RAGE 
interaction also stimulates the production of an endogenous 
inhibitor of endothelial NO synthase, asymmetric dimethyl 
arginine (ADMA) that is expressed in endothelial, renal 
mesangial and renal proximal tubular cells [35,36]. ADMA has 
been recently recognized as a potent biomarker of CVD and 
chronic kidney disease progression and could also be involved 
in cardiorenal complications in diabetes [5,37]. In diabetic 
patients, AGE modification impairs the plasma clearance of low 
density lipoprotein (LDL) and converts it into a more atherogenic 
and redox-sensitive mitogen activated protein kinase (MAPK) 
activator [38].

AGEs have also been implicated in the reduction of adenosine 
triphosphate-binding membrane cassette transporter A1 
(ABCA1) and ABCG1 levels in THP-1 cells that inhibits cholesterol 
efflux from THP-1 macrophages to Apolipoprotein AI and HDL 
cholesterol respectively. This cycle of events implicates the 
involvement of AGE-RAGE axis in impaired reverse translocation 
of cholesterol in diabetes and accelerated formation of foam cells 
in atherosclerotic lesions [39,40]. AGEs promote thrombogenesis 
by activating as well as aggregating platelets and by enhancing 
the expression of tissue factor, which leads to thrombus 
formation. Recent studies have also shown that AGEs potentiate 
thromb in or factor Xa- mediated endothelial and renal cell 
damages via up regulation of protease-activated receptor-1 and 
-2 [41-43]. AGEs’ interaction with their respective RAGE inhibits 
prostacyclin production and induce plasminogen activator 
inhibitor-1 generation in endothelial cells [44]. Therefore, it can 
be stated conclusively that AGEs possess the ability to stimulate 
platelet aggregation and fibrin stabilization, resulting in a 
predisposition to thrombogenesis and promotion of vascular 
injury in diabetes. AGE-induced pathological neovascularization 
of atherosclerotic plaques is often mediated by an ischemia and 
hypoxia mediated upregulation of VEGF [45]. 

This triggers pathological angiogenesis which contributes 
to plaque growth and instability within the atherosclerotic 
plaques in diabetes [5]. Endothelial cell dysfunction and 
decreased endothelial progenitor cell (EPC) function is another 
hallmark of increased risk of cardiovascular complications in 
diabetic patients [46]. AGEs are known to enhance apoptosis 
and suppress migration and tube formation of late EPCs by 
interacting with RAGE and subsequent downstream suppression 
of Akt and COX-2 [47]. This modification impairs vascular repair 
by inhibiting EPC adhesion, spread and migration via glycation 
of Arg-Gly-Asp motif of fibronectin [48]. Vascular calcification 
in atherosclerosis is often mediated by AGEs by means of 
osteoblastic differentiation of pericytes. Activation of RAGE 
inhibits myocardin-dependent smooth muscle cell (SMC) gene 
expression and induces osteogenic differentiation of vascular 
SMCs through Notch/Msx2 induction thus being involved in 

vascular calcification as well [49]. AGEs have been implicated 
in the induction of oxidative stress that subsequently induces 
SMC proliferation via activation of NADPH oxidase. AGE–RAGE–
induced extracellular signal related kinase activation is reported 
to increase Na+/H+ exchanger-1 activity, which leads to a 
decrease in intracellular H+ and subsequently promotes a cell-
cycle progression and SMC proliferation [50].

Conclusion
Advanced Glycation End Products have been established 

to play a causative role in the onset of type 2 diabetes mellitus 
as well as its associated co-morbidities such as diabetic 
nephropathy, diabetic neuropathy, diabetic retinopathy and 
cardiovascular disease. This role is triggered by the chronic 
state of hyperglycemia that is accompanied by inflammation 
and oxidative stress and triggers multiple downstream signaling 
pathways that result in various micro- as well as macrovascular 
complications in diabetic patients.
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