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Introduction
The global pandemic of type 2 diabetes mellitus (T2DM) is 

considered one of the foremost challenges to healthcare delivery 
in the 21st century. According to the latest International Diabetes 
Federation estimates, 415 million adults lived with diabetes 
mellitus globally in 2015, a prevalence that is projected to rise 
to 642 million adults by 2040 [1]. The accelerated increase in 
T2DM incidence is closely linked to increasing central obesity 
at a population level [2]. Indeed, over 85% of individuals with 
T2DM are overweight or obese, resulting in the phenomenon 
referred to as ‘diabesity’ [3].

Chronic kidney disease is also increasing in prevalence as 
a consequence of the diabetes epidemic [4]. Indeed, according 
to US Renal Data System data, 43.9% of end-stage renal disease 
patients in the US have diabetes [5]. Although extensive research  

 
into the identification of biomarkers which predict progressive 
renal functional decline in diabetic kidney disease (DKD) is 
ongoing, two surrogate markers of renal function are currently 
used in clinical practice to monitor renal function in patients 
with diabetes: glomerular filtration rate and albuminuria. DKD 
is characterized by a slowly progressive decline in glomerular 
filtration rate accompanied by increasing albuminuria, with 
inexorable progression to end-stage renal disease over decades 
the norm [6]. Obesity itself, in the absence of comorbid diabetes, 
is associated with glomerular hyperfiltration and albuminuria 
[7].

Lifestyle modification programmes, medically supervised 
very-low calorie diets, drug treatments including glucagon-like 
peptide-1 (GLP-1) analogues, and bariatric surgery constitute 
the therapeutic hierarchy for obesity. The American Diabetes 
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Association and International Diabetes Federation advocate 
for bariatric surgery in individuals with a BMI ≥30 kg/m2 with 
difficult to control T2DM, provided non-surgical measures have 
proved unsuccessful [8]. Given that diabesity is widely prevalent 
and increasing numbers of bariatric surgical procedures 
are being performed globally, this presents an opportunity 
to study the impact of this intervention on DKD outcomes, 
something which promises to offer mechanistic insights into the 
pathophysiology of DKD and ultimately the translation of novel 
therapies to counter the disease.

Pathogenic events in the glomerulus underpin the 
development of diabetic kidney disease

Fenestrated glomerular endothelial cells lining the 
glomerular capillaries, the glomerular basement membrane 
(GBM), and terminally differentiated visceral epithelial cells 
of Bowman’s capsule termed podocytes form the 3 layers of 
the glomerular filtration barrier (GFB), alterations in which 
are central to the pathogenesis of DKD. Normal daily excretion 
rates of albumin are less than 30 mg when integrity of the 
GFB is intact; charge selectivity of the GFB is maintained by 
the glycocalyx of the glomerular endothelium and negatively 
charged proteoglycans in the GBM, while size selectivity of the 
GFB is created by cytoplasmic extensions of podocytes termed 
foot processes cross-bridging at specialized cellular junctions 
called slit diaphragms [9]. Podocyte injury, characterized by 
adaptive foot process effacement which compromises the slit 
diaphragms and GFB, is central to the onset and progression of 
albuminuria in obesity and diabetes [10].

Glomerular haemodynamics are altered in patients 
with obesity and diabetes due to activation of the renin-
angiotensin-aldosterone system (RAAS). Angiotensin II-
mediated efferent arteriolar vasoconstriction via AT1 receptors 
coupled with afferent arteriolar vasodilatation due to reduced 
tubuloglomerular feedback elevates intra-glomerular blood 
pressures and causes wall stress in the glomerular capillaries 
[11]. Increased renal plasma flow and increased renal venous 
pressure related to increased intra-abdominal pressure are 
observed in obese individuals, factors which also contribute to 
glomerular hypertension [12]. In vitro studies have revealed 
that the podocyte cytoskeleton reorganizes itself in response to 
mechanical stress in the glomerular capillaries to result in foot 
process effacement, something which compromises the GFB and 
serves as a nidus for the development of albuminuria [13].

DKD is increasingly recognized to occur in a complex 
inflammatory milieu involving multiple signaling pathways, 
powered by metabolic deregulation in the form of insulin 
resistance, hyperglycemia, and dyslipidaemia. Advanced 
glycation end products (AGEs) are formed non-enzymatically 
in the setting of impaired glycemic control when glucose reacts 
with the free amino groups of circulating and tissue proteins. 
Binding of AGEs to their receptors has been implicated in the 
progression of DKD by altering intracellular signaling, gene 

expression, and accelerating inflammation and oxidative stress 
to contribute to podocyte injury [14]. Adiponectin is an insulin-
sensitizing protein whose production by adipocytes is reduced 
through inflammatory mechanisms in obesity [15]. Adiponectin 
receptors are present on podocytes and appear to play a role 
in the maintenance of podocyte integrity in rodent models 
of obesity, such that adiponectin-deficient mice develop foot 
process effacement and consequent albuminuria [16].

Impact of bariatric surgery and GLP-1 on podocyte 
function

The beneficial impact of bariatric surgery on human DKD 
has been substantiated by mechanistic insights from rodent 
models. Unlike existing drug treatments for DKD such as 
RAAS inhibitors which target individual pathogenic mediators, 
bariatric surgery ameliorates the haemodynamic alterations, 
metabolic disturbances, oxidative stress, and pro-inflammatory 
mechanisms which perpetuate DKD concurrently.

The reduction in albuminuria post-Roux-en-Y gastric bypass 
surgery (RYGB) correlates with blood pressure reductions 
[17]. Navarro-Diaz et al. demonstrated sustained reductions in 
glomerular hyperfiltration and albuminuria at 24 months post-
bariatric surgery in extremely obese individuals with a mean 
BMI of 53.62kg/m2 [18]. Although the majority of weight loss 
and reduction in glomerular hyperfiltration occurred in the first 
year post-surgery, albuminuria continued to decrease in the 
second postoperative year, suggesting that podocyte function 
may continue to improve remote from when its injurious 
stressor has been removed.

Furthermore, glycemic and lipid parameters, potent 
stimulators of ongoing inflammation and progression in DKD, 
improve dramatically post-bariatric surgery [19,20]. Bariatric 
surgery also reduces renal inflammation, with significant early 
reductions in urinary cytokines (migration inhibitory factor, 
monocyte chemotactic protein-1 (MCP-1), and chemokine 
ligand-18) observed at 4 weeks after a variety of bariatric surgical 
procedures, including laparoscopic adjustable gastric banding, 
RYGB, and sleeve gastrectomy [21]. MCP-1 mRNA expression 
increases in animal models of DKD and localizes to the podocyte 
[22]. Thus, its expression is reflective of podocyte injury and 
its reduction post-bariatric surgery indicates improvement in 
podocyte function.

Bariatric surgery may also have renoprotective effects 
through novel endocrine mechanisms. The post-prandial 
response to GLP-1 is increased following RYGB, resulting 
in increased glucose-dependent insulin secretion, reduced 
glucagon secretion, and delayed gastric emptying [23].These 
GLP-1 effects enhance glycemic control and the sensation of 
satiety postoperatively, which by themselves may ameliorate 
the dysmetabolic and inflammatory milieu of DKD. More 
direct renoprotective effects of GLP-1 are increasingly 
recognized, however. GLP-1 inhibits proximal tubular sodium 
reabsorption, increases distal renal tubular sodium delivery, 
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activates tubuloglomerular feedback, and increases afferent 
arteriolar resistance which attenuates glomerular hypertension 
[24]. Interestingly, sodium-glucose cotransporter-2 (SGLT2) 
inhibitors have a similar natriuretic effect in the proximal tubule 
[24], and both Liraglutide (GLP-1 analogue) and Empagliflozin 
(SGLT2 inhibitor) have demonstrated renoprotective benefits 
additional to RAAS inhibitors in randomized, placebo-controlled 
trials in patients with T2DM [25,26]. GLP-1 analogues have also 
been shown to reduce renal oxidative stress and consequent 
albuminuria by down-regulating NADPH oxidase activity in a 
rodent model of DKD [27].

Despite recent advances, much remains unknown about the 
impact of bariatric surgery and other obesity interventions on 
DKD progression. The degree of weight loss necessary to slow, or 
even reverse, the course of DKD along with other microvascular 
complications of T2DM remains to be elucidated. Furthermore, 
the relative efficacy of various weight loss interventions such as 
lifestyle modification programmes, very low-calorie diets, drug 
treatments including GLP-1 analogues, and the assortment of 
bariatric surgeries on slowing the course of DKD progression 
should be investigated. Serum and urinary biomarkers which 
identify obese T2DM patients at high risk for DKD progression, 
and which can be monitored to determine response to therapy, 
are actively being investigated.

Conclusion
Podocyte dysfunction is central to the pathogenesis of DKD, 

and results from a complex interplay of haemodynamic, metabolic, 
and inflammatory disturbances which are accelerated in the 
presence of obesity. Bariatric surgery improves markers of renal 
dysfunction such as albuminuria and glomerular hyperfiltration 
in human DKD. The degree of weight loss necessary to slow DKD 
progression in obese T2DM patients and the relative efficacy of 
obesity interventions on DKD course remain to be elucidated.
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