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Introduction
Insulin is the major pancreatic hormone that regulates 

the glucose homeostasis in our body. The pathological state 
in which the production of insulin is decreased, mostly due to 
beta cell destruction is known as insulin deficiency whereas the 
situation in which insulin secretion is normal and muscle cells 
are unable to respond to the systemically available insulin is 
referred to as insulin insensitivity or insulin resistance (IR) [1]. 
In such resistant states, the body cells fail to take up the glucose 
from blood stream and this leads to elevated blood sugar levels, 
referred to as hyperglycemia. IR is a primary pathological result 
of obesity and hypertriglyceridemia [2] that leads to a wide range 
of secondary complications such as type 2 diabetes (T2DM) 
[3], metabolic syndrome (Syndrome X) [4,5], cardiovascular 
events [6,7], stroke [8] including recently discovered link 
between hypertriglyceridemia, insulin resistance, altered brain 
glucose homeostasis, Alzheimer’s disease [9,10] and cognitive 
dysfunctions [11-13]. The pathophysiology of insulin resistance  

 
is very complex with number of known etiologies, most of 
which are diet or nutrition related. Over-nutrition or obesity 
triggered inflammation in adipose tissue [7,14], altered lipid 
metabolism resulting in hypertriglyceridemia [15] and distorted 
gastrointestinal microbiota (dysbiosis) [16-18] and all of the 
contributing factors are interrelated at variable degrees to rise to 
the final state of IR. The complexity and multi factorial etiologies 
of IR sum up to make it very hard to replicate and develop a 
heterogeneous animal model for the purpose of understanding 
the pathogenesis of IR and its secondary complications and 
pharmacological screening of chemical entities. Hence the new 
chemical entities need to be screened in more than one animal 
models of IR to determine their safety and efficacy. Currently, a 
number of preclinical testing systems including transgenic models 
are available for the purpose of IR research. Among various 
available models of IR, diet-induced animal models are affordable, 
extensively studied and utilized for the research purposes [19]. 
Diet-induced animal models involve the use of high calorie 
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containing food sources such as fats (vegetable oil and animal fat 
consisting high amounts of saturated fats) [20,21], fructose corn 
syrup [22,23] and sucrose [24] alone or in combination [25,26] 
to induce IR. Though, these dietary animal models induce the 
disease with similar pathophysiological mechanisms to that of 
clinical cases, the development of pathological hallmarks of IR 
takes 12-24 weeks of time which makes these models tedious and 
cumbersome to use [25,27].

Zymosan A, a glucan with repeating glucose units connected 
by β-1, 3-glycosidic link ages is an insoluble powder prepared 
from cell wall from Saccharomyces cerevisiae, consisting of 
protein-carbohydrate complexes [28]. Zymosan is an inflammagen 
majorly used as a pharmacological tool to develop animal models 
of rheumatoid arthritis [29], acute peritonitis, multiple organ 
failure [30] and IR [31]. Zymosan exerts its inflammatory actions 
by stimulating macrophages via TLR-2 Receptors and Neutrophil 
infiltration through various activated cytokines and chemokiness. 
Zymosan stimulated TLR-2 associates with TLR-6 and CD-14 
cells, initiating the activation of macrophages [28]. Furthermore, 
zymosan acts directly by binding to Dectin-2 a phagocytic 
receptor which is expressed on the surface of macrophages and 
dendritic cells. Recognition of zymosan by Dectin-2 besides the 
activation of TLR-2 and TLR-6 augments the immune response 
that leads to inflammation [32]. Zymosan causes neutrophil 
infiltration to the site of action by stimulating the production of 
Leukotriene B4 (LTB4), a chemotactic agent responsible for the 
recruitment of various chemokines and cytokines like IL-1α, IL-
15, IL-18, TNF-α, IL-8, MIP-1 α and MIP-2 [33,34]. Zymosan also 
exerts its action by other minor mechanisms that play a key role 
in inducing inflammation, which includes-systemic hypotension, 
increasing plasma nitric oxide levels, increasing cycloxygenase 
activity, increasing exudates formation and excessive reactive 
oxygen species (ROS) production by formation of activated 
polymorphonuclear(PMN)cells [30].

Being an inflammagen, Zymosan has become one of the 
potential tools for disease animal modeling where inflammation 
has major role to play to mimic the similar pathophysiology as 
that of humans. With varying dose, zymosan has been used to 
develop various preclinical disease models. The disease models 
include rheumatoid arthritis induced in wistar rats by injecting 
in rear knee joint at a dose of 1mg suspended in 50µL of sterile 
normal saline [29], multiple organ failure by administering 
intraperitoneally (i.p.) to rats at a dose of 500mg/kg [30] and 
acute peritonitis by i.p. injection to Balb/C Mice at a dose of 0.5mL 
from a zymosan stock solution of 2mg/mL [35].

Till date, there has been only one study published over the 
use of zymosan to induce reversible IR in preclinical setting. Mice 
were injected with zymosan via i.p. Route at a dose of 100mg/kg 
once a week for four consecutive weeks. Inflammation driven ROS 
production is the mechanism involved in zymosan induced IR. 
Zymosan causes inflammation through activation of macrophages 
via stimulation of TLR-2 and TLR-6, Activation of PMN cells 

to escalate the intracellular ROS production. In this model of 
IR, zymosan injection has also been held responsible for the 
reduced expression of various protein markers involved in insulin 
signaling like IRS-1, PI3-Kinase, phosphorylated GSK-3 and Akt 
[31].The main aim of this review is to highlight the importance of 
need of accelerated new animal model to study insulin resistance 
and associated secondary complications of IR.

Discussion
Feeding laboratory animalsadlibitum with high calorific diets 

take a minimum time of 12 weeks to reach the IR state whereas a 
study carried out by Wang et al. [31] suggest that zymosan could 
successfully induce IR within just 1/3 of the time that is taken by 
high calorific diet to create the same situation. The only limitation 
of this model is that the IR is reversible and animals have returned 
to their normal state within 4 weeks after withdrawal of zymosan 
administration. Meanwhile, we hypothesize that the combinatorial 
use of high calorific diet and zymosan can cut short the time 
duration to induce IR. The use of zymosan with high calorific 
diet will be rational, as both of these disease inducing agents act 
through the analogous inflammatory pathways. Zymosan and 
high calorific diet acts on toll like receptors (TLRs) present on cell 
membrane to initiate the release of inflammatory cytokines which 
in turn leads to the activation of NF-κB and JAK-STAT pathways 
that desensitize insulin receptors towards insulin and leads to 
surge in unutilized levels of insulin in systemic circulation, can 
also be termed as insulin resistance [28,36-38].

Conclusions & Prospective
A.	 Insulin resistance is considered as a major mediating 
and facilitating factor for the development of secondary 
metabolic complications associated with consumption of high 
calorific or cafeteria or junk food. With an aim of developing a 
new, less time consuming and clinically relevant animal model 
to study and understand the pathology of various metabolic 
complications in which IR plays a vital role.

B.	 Inflammation is the common mechanism through which 
the high calorific diets and zymosan induce IR and their 
combined use shall exert a synergistic effect towards rapid 
onset of insulin resistant state than traditional models. This 
hypothesis can be adapted and utilized by the researchers 
working in the fields of IR, obesity, T2DM, metabolic syndrome 
and cognitive dysfunction associated with metabolic 
complications.
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