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Introduction
Obesity is a medical condition relating to accumulation 

and storage of excess body fat, predisposing to negative health 
implications. The fundamental cause of obesity is a simple energy 
imbalance between calorific intake and calorific expenditure. 
Sedentary lifestyle and an increase in consumed calories are 
the main contributors to this increase in weight gain [1]. Such 
is the tightness of the molecular link between obesity and Type 
2 Diabetes Mellitus (T2DM), some researchers utilize the term 
Diabesity in reference to both [2]. T2DM, the most common form 
of diabetes, is characterized by 

A.	 A lack of insulin due to dysfunctional pancreatic beta 
cells.

B.	 Reduced insulin sensitivity. 

C.	 Insulin resistance [3]. 

Insulin-resistant individuals demonstrate an impaired ability 
of insulin to stimulate glucose uptake into skeletal muscle, 
to suppress gluconeogenesis, and to suppress hydrolysis of 
triglycerides into fatty acids in adipose tissue.

Adipose tissue has long been considered as a storage depot 
for triglycerides. However, it has become well established  

 
that a secretary role exists for adipose tissue [4]. As well as 
releasing lipids, cytokines such as Tumor Necrosis Factor-α and 
interleukins, chemokines such as Monocot Chemo attractant 
Protein 1 (MCP-1) and coagulation factors such as Plasminogen 
Activator 1 (PAI-1) and adipokines are also secreted [5]. A subset 
of chemokines specific to adipose tissue, termed adipokines is 
also released [6]. Some, such as lepton and adiponectin have been 
highly characterized and their functions clearly elucidated [7,8].

Specifically within adipose tissue, Nicotinamide Adenine 
Dinucleotide (NAD+) and its derivatives act as essential coenzymes 
in cellular redox reactions in all living organisms [9]. The primary 
function of the NAD+ pathway mediates energy metabolism, 
reductive biosynthesis and anti-oxidation. During cellular 
redox reactions, the associated coenzymes Nicotinamide (NAM) 
and Nicotinamide Mononucleotide (NMN) transfer electrons 
throughout the pathway. In general, NAD+ has been shown to 
be synthesized by two separate paths; de novo synthesis from 
tryptophan or through the salvage pathway, being formed by the 
recycling of the other coenzymes Nicotinamide and NMN [9,10]. 
NAD+ has also been shown to modulate the activity of essential 
regulators of cellular longevity [11]. As well as its role in redox 
reactions, NAD+ is also an important signaling molecule, being 
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released from cells such as adiposities into systemic circulation 
[12]. Figure 1 Cyclic production process of NAD+ is regulated by the 
rate-limiting enzyme Nampt. NAD+ can activate SIRT1, which can 
elevate serum levels of Adiponectin through activation of Fox01. 
NAD+ inhibits the transcription activity of PPARϒ, preventing the 
transcription of adipocytic genes involved in insulin resistance. 
SIRT1 can also deacetylate iNampt, releasing it extracellularly. 
Once released, eNampt can convert Nicotinamide (NAM) to 
Nicotinamide Mononucleotide (NMN), and generate NAD+ in 
pancreatic beta cells, modulating insulin secretion. The presence 
of SIRT1 in vascular endothelial cells can regulate expression of 
cell adhesion molecules, implicated in the vascular pathogenesis 
of Type 2 Diabetes Mellitus.

Figure1: Regulatory pathways of nampt in adipose tissue.

Nampt

Nicotinamide phosphoribosyltransferase (Nampt) is a 
regulatory enzyme of the NAD+ cascade synthesized and released 
by adiposities, as well as inflammatory cells such as activated 
macrophages [13]. The enzyme was originally identified as 
presumptive cytokine termed Pre-B-cell colony-Enhancing 
Factor (PBEF), due to its isolation and cloning from activated 
lymphocytes [14]. Visfatin, referring to visceral fat from which the 

enzyme is derived was separately isolated and shown to possess 
insulin-mimetic effects, being predominantly secreted from 
visceral fat [12]. Later, amino acid sequence analysis of Visfatin 
showed sequence identity to PBEF/Nampt [15]. 

While all three names (Nampt, PBEF, and Visfatin) can be 
found used interchangeably in the literature, both the HUGO 
Gene Nomenclature Committee (HGNC) and the Mouse Genomic 
Nomenclature Committee (MGNC) have approved the use of 
Nampt as the official nomenclature of the gene and the gene 
product. Therefore, Nampt will be used throughout this review.

Genetic Location
Located on the long arm of chromosome 7(7q22.1-7q31.33) 

the NAMPT gene is well conserved across species [16]. The gene 
encodes a 2.4kb mRNA sequence, giving rise to a 491amino acid 
52 kDa protein [15]. Interestingly, although Nampt is believed 
to be secreted, the mature protein sequence lacks both a signal 
sequence and capsize cleavage site [12]. The mature Nampt 
protein forms a homodyne, which is essential for catalytic activity 
of the enzyme. Homodimerization results in the formation of two 
active sites at the interface of the dimeric protein. It is believed 
that this region is essential for regulation of the production of 
NMN from nicotinamide [15].

Types and Regulation
The mature protein of Nampt exists in two different cellular 

locations: intracellular Nampt (iNampt) and extracellular Nampt 
(eNampt) [17]. Although both forms of Nampt are critical rate-
limiting enzymes in the production of NAD+, their rate of activity 
differ, depending on cellular location. In adipose tissue, iNampt is 
involved in the salvage pathway in the production of NAD+ [13]. 
Within adipose tissue, NAD+ is reduced and oxidized continuously. 
iNampt converts Nicotinamide to NMN, and is the rate limiting 
enzyme in this step [18]. Subsequently, NMN becomes acetylated 
by NMNAT, converting it to NAD+. During redox reactions in the cell, 
NAD+ consumers utilize NAD+, converting it to Nicotinamide, which 
in the salvage cycle becomes available for iNampt to reconvert 
Nicotinamide to NMN. Depletion of the cellular pool of NAD+ is 
prevented by de novo synthesis of NAD+ from tryptophan [10]. 
The biological role of eNampt has been a matter of much debate. 
Initially, it was first believed that the systemic release of eNampt 
was due to dying cells [19]. Later though, it was demonstrated 
that the secretion of eNampt occurs from adiposities by secretion 
through a non-classical secretary pathway [20]. The sequence of 
Nampt lacks both a signal sequence and caspase cleavage site [21]. 
SIRT1, one such NAD+ consumer, deacetylates iNampt, releasing 
it into the extracellular milieu [22]. Once secreted, eNampt is 
believed to play several roles essential to glucose homeostasis 
[20].

It has been demonstrated that eNampt can initiate a dose-
dependent up regulation of pro- and anti-inflammatory cytokines 
[23]. With eNampt itself believed to play a role as both a cytokine 
and adipokine. eNampt mediates the biosynthesis of systemic 
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NAD+. This NAD+ has been shown to be necessary for pancreatic 
beta cell function, as well as the regulation of Glucose-Stimulated 
Insulin Secretion (GSIS) [20].

Downstream Mediators
SIRT1

SIRT1, a class III his tone deacetylase, belongs to the family 
of Sit-ins (SIRTs) [24,25]. Through the consumption of NAD+, 
SIRT1 deactivate downstream proteins on specific lysine 
residues [26]. Blocking of SIRT1 activity by techniques such as 
antisense technology can induce adipose tissue infiltration, as 
well as infiltration of activated macrophages [26]. Conversely, 
deactivation of Fox01 by SIRT1 in adiposities has been shown to 
increase levels of Adiponectin, an adipokine conveying sensitivity 
to insulin. As a result, the pharmacological activation of SIRT1 by 
agents such as resveratrol is being investigated as a method for 
increasing insulin sensitivity in diabetic patients [25].

PPARϒ
PPARϒ has long since been a target for investigation for the 

treatment of obesity-associated insulin resistance, due to its 
ability to regulate whole-body insulin sensitivity. Interestingly, in 
adipose tissue SIRT1 suppresses the actions of PPARϒ, preventing 
adiposeness [27,28]. The actions of SIRT1 on PPARϒ occur at two 
distinct sites at a post-translational level. Firstly, deactivation of 
PPARϒ suppresses PPARϒ-dependent insulin-resistance genes 
[27]. Secondly, through inhibition of phosphorylation of ser273 
in PPARϒ, a subset of PPARϒ-dependent genes are silenced; these 
genes controlling glucose metabolism and insulin sensitivity [29]. 

NF-ⱪB
A potential role of eNampt in the pathogenesis of vascular 

inflammation in obesity and T2DM has been suggested [30]. An 
induction of adhesion molecules such as ICAM-1 and VCAM-1 
in response to eNampt has been demonstrated in leukocytes 
[31], mediated through the induction of the pro-inflammatory 
transcription factor Nuclear Factor-ⱪB (NF-ⱪB). Induction of 
NF-ⱪB-mediated matrix metalloproteinase’s (MMPs) in vascular 
endothelial cells was also demonstrated [32]. This suggests a role 
for eNampt in the development of the vascular complications 
associated with obesity and T2DM.

Nampt in T2DM
The development of Nampt knockout mice has supplied 

evidence of the role of Nampt in both obesity and diabetes. 
Homozygous deletion of the Nampt gene results in lethality in 
knockout mice [33]. However, in heterozygote’s, impaired glucose 
tolerance is seen as a result of the regulation of GSIS by Nampt 
[20]. Loss of Nampt modulates the levels of NAD+ in pancreatic 
beta cells, reducing insulin secretion in response to plasma 
glucose [33]. 

In the elderly, T2DM is associated with a progressive decline 
in pancreatic beta cell function [34]. SIRT1 activation by Nampt-

generated NAD+ has been implicated in the processes of longevity. 
Given that SIRT1 is known to positively regulate GSIS, the loss of 
Nampt through progressive decline in pancreatic beta cell function 
is believed to contribute to obesity-associated multi-organ insulin 
resistance [20].

Nampt in Obesity
In adipose tissue, synthesis of NAD+ by Nampt has been shown 

to be highly sensitive to nutritional changes. These alterations in 
calorific input have subsequently been implicated in the path 
physiology of modification of whole-body glucose metabolism 
and insulin sensitivity [35]. For example, in mice, feeding on 
hyper calorific diets has been shown to decrease NAD+ levels, 
primarily as a result of a reduction in Nampt [36,37]. Correlation 
of plasma eNampt levels in human metabolic disorders such as 
obesity still remains unclear. One of the main reasons for this is 
a lack of sensitivity of the assay type used to determine serum 
concentrations [38]. However, a positive correlation between an 
increase in BMI and Nampt levels has been demonstrated, as well 
as increased white adipose tissue. Interestingly, gastric banding 
has been shown to reduce circulating eNampt levels [39]. As 
assays become more sensitive, more reliable measurement of 
serum eNampt should give us insight into its effects on metabolic 
disorders.

Nampt Treatment Strategies
The use of PPARϒ agonists has been a mainstay treatment in 

T2DM in non-obese patients for a considerable time. Activation of 
PPARϒ by Thiazolidinediones (TZDs) results in the expression of 
a number of genes involved in both lipid and glucose metabolism 
and preadipocyte differentiation. TZDs increase insulin sensitivity, 
as well as increase utilization of glucose by peripheral tissues 
[40]. TZDs however have been known to cause hepatic damage, as 
well as adversely inducing an increase body weight, making them 
unsuitable for use in obese patients [41].

Since Nampt has been shown to positively regulate PPARϒ 
through NAD+-mediated activation of SIRT1, interest has grown 
in the targeting the Nampt-NAD+-SIRT1-PPARϒ axis as a novel 
approach in the treatment of age-related diseases such as ageing 
and T2DM. A naturally-occurring polyphenolic supplement 
Resveratrol putatively activates SIRT1 [42]. In animal studies, 
Resveratrol administration was shown to increase insulin 
sensitivity and increase longevity of mice on high-calorie diets 
[43]. More selective and potent SIRT1 activators known as STACs 
(Synthetic Sit-in-Activating Compounds) such as imidazothiazole 
are currently under investigation [44].

Given the actions of SIRT1 on glucose homeostasis, an 
interesting therapeutic approach would be in the development 
of Nampt-NAD+ activating compounds. Since activation of SIRT1 
is solely dependent on Nampt-NAD+, small molecule activators of 
these proteins may prove an effective strategy in the treatment of 
age-related metabolic disorders.
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