
Opinion
Volume 4 Issue 3 - October  2017

DOI: 10.19080/CRDOJ.2017.04.555640

Curre Res Diabetes & Obes J

Copyright © All rights are reserved by Julia Peinado Onsurbe

The Perfect Storm: Non-Alcoholic Fatty Liver 
Disease (NAFLD) and Atheromatosis in Morbidly 

Obese Patients with or Without Diabetes. Effect of 
Bariatric Surgery

Júlia Carmona1, Eva Pardina1, Joana Rossell1, David Ricart Jané1, Juan A Baena Fustegueras2 and Julia Peinado 
Onsurbe1*
1Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
2Unitat de Cirurgia, Hospital Universitari Arnau de Vilanova (Universitat de Lleida), Spain

Submission: October 20, 2017; Published: October 25, 2017

*Corresponding author: Julia Peinado Onsurbe, Department de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de 
Barcelona, Diagonal 643, 08028 Barcelona, Spain, Tel: ; Fax: (34)-(93)-4021559; Email: 

Introduction

Non-alcoholic fatty liver disease (NAFLD)

Excess liver fat is extremely common, and the prevalence 
of NAFLD has been increasing rapidly, paralleling the epidemic 
of type 2 diabetes mellitus (T2DM) and obesity leading to 
cardiovascular disease (CVD). It has been demonstrated that 
NAFLD is strongly associated with atherosclerosis [1]. Simple 
hepatic steatosis has been shown to be associated with marked 
silent carotid atherosclerosis [5]. The prevalence increases to 
57% in obese subjects, 70% in diabetic subjects and 90% in 
morbidly obese people [6,7]. 

Increased hepatocyte triglyceride formation could play 
a protective role to prevent hepatocytes from FFA-induced 
damage. These toxic effects induced by FFA and other derived 
metabolites is known as lipotoxicity [8]. One important mediator 
of lipotoxicity is the over-production of reactive oxygen species 
(ROS). When ROS production exceeds the antioxidant capacity, it 
leads to oxidative stress. Numerous studies have demonstrated 
that oxidative stress is elevated in NAFLD patients [9]. Despite 
the powerful anti-oxidant capacity of the liver, excessive FFA 
oxidation in the steatotic hepatocytes could cause substantial 
oxidative stress [10]. 
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Abstract

In recent years, the prevalence of non-alcoholic fatty liver disease (NAFLD) has increased rapidly, paralleling the epidemic of type 2 
diabetes mellitus (T2DM) and obesity leading to cardiovascular disease (CVD). It has been demonstrated that NAFLD is strongly associated with 
atherosclerosis [1]. With recently gained knowledge, it now appears that NAFLD might induce insulin resistance, dyslipidaemia, oxidative stress, 
inflammation, and fluctuation of the adipokines associated with atherosclerosis [1]. The association between NAFLD and atheromatosis in obese 
patients with or without T2DM has been controversial. It could be that liver disease participates in the origin of atheromatous plaques.

Excess liver fat is extremely common, and the prevalence of NAFLD has been increasing mainly because of the increased prevalence of 
obesity. The prevalence increases to 57% in obese subjects, 70% in diabetic subjects and 90% in morbidly obese people. Patients with NAFLD 
are at increased risk for cardio-metabolic complications, such as CVD and T2DM. Bariatric surgery corrects improves the steatosis, T2DM [2,3] 
and cardiovascular risk factors, and it reduces long-term cardiovascular events. 

It is possible that a higher degree of liver disease indicates further progression of atheroma, but that finding could occur given that, due to a 
certain degree of liver injury, bariatric surgery is notable to improve or reverse vascular lesions [4].
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Oxidative stress can cause mitochondrial injury by causing 
the reaction of ROS with polyunsaturated fatty acids (PUFAs) 
at the mitochondrial membrane. Insulin resistance (IR) plays 
a central role in these processes by allowing for the excessive 
flow of fatty acids from adipose tissue and also by impairing 
peripheral glucose disposal. Peroxisome proliferator-activated 
receptor a (PPAR-a) is a key transcription factor regulating the 
expression of genes involved in mitochondrial, peroxisomal 
and microsomal FFA oxidation [11]. Hepatocyte injury, a 
characteristic of NAFLD, which manifests as ballooning, is 
produced by the abnormal distribution of intermediate filaments 
induced by oxidative stress. This reaction is mediated by the 
Wnt/beta-catenin pathway. These ROS attack and react with 
PUFAs (polyunsaturated fattyacids) present at themitochondrial 
membranes, so ROS damage mitochondrial DNA and cause 
mitochondrial dysfunction. Apoptosis can be initiated by 
dysfunction almitochondria via the Wnt/beta-catenin pathway, 
and it is also the main mechanism of death in NASH, promoting 
the progression from simple steatosis to NASH.

Kupffer cells play a key role in liver inflammation [12], 
regulated by the balance of pro-inflammatory M1 Kupffer 
cells and anti-inflammatory M2 Kupffer cells [13]. Imbalanced 
M1/M2 phenotypic Kupffer cells have emerged as a central 
mechanism underlying steatohepatitis. Kupffer cells are exposed 
to various substances and they function to sense and remove 
pathogens and dangerous molecules via pattern recognition 
receptors (PRRs). The PRRs comprise at least two families of 
sensing proteins: the Toll-like receptors (TLRs) and the NOD-like 
receptors (NLRs). Both NLRs and TLRs detect danger signals, 
including pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs). PAMPs are 
pathogens originating from gut-derived microorganisms, while 
DAMPs include molecules endogenously released from stressed 
or injured hepatocytes. TLRs recognize bacterial products 
derived from gut microbiota, such as lipopolysaccharide (LPS, 
also known as endotoxin) and peptidoglycan. Kupffer cells are 
the primary sensors of PAMPs and DAMPs as well, and TLR and 
NLR receptors have emerged as important mediators of Kupffer 
cell activation [14].

Atheromatous processes

The vasa vasorum (VV) are blood vessels that extend from 
the adventitia of large vessels and irrigate their walls. Its 
primary mission is to provide nutrients and oxygen to the layers 
that cannot penetrate the blood vessel lumen. One of the earliest 
changes that can be observed in the atheromatous process is 
the proliferation of VV in the adventitia [15]. The hypoxia is the 
main stimulus of intimal neovascularization by perpendicular 
adventitial vessels [16]. Hypoxia of the vessel wall, either by 
injury or by increasing demand, is the main factor inducing 
neoangiogenesis [17]. A correlation was shown between the 
density of the VV and the progression of atherosclerotic plaque 
[18]. Neovascularization and endothelial dysfunction are the 

initial phenomena of atheromatosis, while increased IMT and 
appearance of the plaque occur later.

Endothelial injury

Theendothelial injury process begins with the molecular 
responses of transcription factors induced by hypoxia (HIF, 
hypoxia inducing factor) [19], where in the increase in 
low density lipoprotein [20] and reduced nitric oxide (NO, 
mainvasodilator) initiate a cascade of endothelial activation, 
recruitment of inflammatory cells, production of reactive oxygen 
species(ROS) and monocyte infiltration, the direct migration of 
which is mediated by monocytechemo attractant protein(MCP-1) 
[21]. The LDL are subjected to oxidative modification, resulting 
in a highly oxidized and aggregated lipoprotein called oxLDL, 
which is among the more atherogenic forms of LDL [22]. OxLDL 
stimulates the inflammatory signalling by endothelial cells, 
releasing chemotactic proteins, such as MCP1, and growth 
factors, such as monocyte colony-stimulating factor (MCSF), 
which facilitate the recruitment of monocytes by the arterial 
wall, a process mediated by the selectins [23]. oxLDL also 
promotes monocyte differentiation into the macrophages that 
convert oxLDL into lipid-laden foam cells, which are cells with 
the hallmark of atherosclerosis [22]. oxLDL is recognized by the 
scavenger receptor (landfill) macrophages SR-A and SRB-1 or 
CD36 (scavenger receptor-A and B, respectively). In nondiabetic 
subjects, sCD36 (soluble CD36) was significantly associated 
with IR indices, carotid atherosclerosis and fatty liver. However, 
prospective studies are needed to further evaluate the role of 
sCD36 in the inter-relationship among atherosclerosis, fatty 
liver and insulin resistance [24]. 

Activated macrophages express cytokines, such as TNF-a, 
and IL-1 beta (Interleukin-1 beta), which stimulate endothelial 
cells to express adhesion proteins, such as VCAM-1 and ICAM-1 
(vascular-1 molecules and adhesion intercellular-1, respectively). 
ICAM-1 plays an important role in the recruitment of immune 
cells during the progression of plaque, and it was positively 
correlated with HOMA-IR (homeostasis model of resistance 
insulin), BMI (body mass index), leptin, and adiponectin and 
negatively correlated with high density lipoprotein (HDL) 
cholesterol [25]. Moreover, ICAM-1 is induced as a result of the 
binding of angiotensin-2 to its receptor, promoting the release of 
ROS and endothelin-1 by endothelial cells [26]. Other molecules 
involved in pathophysiology of the plaque are VEGF [26], PAI-1 
and adiponectin [27]. 

It is well established that IR is the primary factor underlying 
hepatic steatosis. IR is present in almost all NAFLD patients 
[28]. Fat accumulation in the liver is associated with oxidative 
stress and lipid peroxidation. Furthermore, NAFLD subjects 
have increased secretion of inflammatory marker and plasma 
glucose and decreased HDL concentrations. The consequence 
of this physiological dysfunction is an increased risk for the 
development of diabetes and atherosclerosis and an increased 
risk of coronary artery disease [29].
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Both diabetes and IR cause a combination of endothelial 
dysfunctions, which can diminish the anti-atherogenic role of the 
vascular endothelium [30]. Therefore, in patients with diabetes 
or insulin resistance, endothelial dysfunction might be a critical 
early target for preventing atherosclerosis and cardiovascular 
disease. The biochemical or cellular links between elevated 
blood glucose levels and vascular lesions remain incompletely 
understood.

Molecular mechanisms

MicroRNAs (miRNAs) have emerged as a new class of gene 
regulators, recent studies of which have emphasized that they 
play a crucial role in atherosclerosis [15]. miRNAs have also 
been associated with oxidative stress, inflammation, insulin 
signalling, apoptosis and angiogenesis related to obesity. All of 
these processes contribute to the development of T2DM and 
atherosclerosis and therefore are associated with cardiovascular 
disorders [31]. Recent studies have reported that the miRNAs 
released by cells have endothelial anti-atherogenic properties, 
similar to those that increase vascular areas when the laminar 
flow is high or that decrease when the flow is low or abnormal, 
such as miRNA-10a [32], the miRNA-19 [33] or miRNA-143/-145 
[34]. Other studies have reported pro-atherogenic roles for 
miRNA-712 [35] and miRNA-92a [36].

Studies of human NAFLD have identified approximately 44 
miRNAs dysregulated in the NAFLD liver [37]. Several miRNAs 
have been identified as playing key roles in the development 
of steatosis and its progression to steatohepatitis, fibrosis, 
cirrhosis, and hepatocellular carcinoma [38]. Overexpression 
of miR-185 resulted in increased insulin receptor substrate-2 
(IRS-2) expression, improved insulin sensitivity and reduced 
steatosis [39]. The predicted targets of miR-122 include genes 
regulating cholesterol and lipid metabolism, proteasomal protein 
degradation, cell adhesion and extracellular matrix biology [40]. 
In addition to miR-122, several miRNAs have been associated 
with the pathogenesis of NAFLD. Cheung and colleagues found 
that miR-21 was heavily upregulated in the livers of patients 
with steatohepatitis [41]. 

Atheromatosis, NAFLD and endothelial changes may be 
reversible Bigornia et al. [42] demonstrated that reversing 
endothelial dysfunction at 12 months of weight loss was a more 
important metabolic change than the degree of weight loss. Mavri 
et al. [43] observed similar results in obese subjects submitted 
to a diet and found an improvement in endothelial dysfunction 
at one week after initiating the diet. Recently, decreased IMT was 
found after gastric bypass only in obese patients with T2DM but 
not in patients with impaired glucose tolerance [44]. Currently, 
we have several non-invasive techniques that allow us to assess 
endothelial dysfunction and adventitious arterial blood, more 
specifically VV, including the study of arterial tone in peripheral 
beds with EndoPAT and examining the density of the VV in the 
adventitia with carotid ultrasound echography after contrast 

administration (microbubbles of hexafluoride sulphur). The use 
of micro bubbles allows us to study the vascular structures that 
these compounds leave in the bloodstream and thus allows for 
the visualization of VV [45]. 

All this finding showed that relatively early atherosclerotic 
changes might be reversible if it is explored with more sensitive 
measuring methods than IMT, presumably by measuring more 
development and obtaining early results.
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