
Review Article
Volume 7 Issue 4 - July 2018
DOI: 10.19080/CRDOJ.2018.07.555719

Curre Res Diabetes & Obes J
Copyright © All rights are reserved by Surapon Tangvarasittichai

Iron Homeostasis and Diabetes Risk
Surapon Tangvarasittichai*
Department of Medical Technology, Naresuan University, Thailand

Submission: January 27, 2018; Published: July 05, 2018

*Corresponding author: Surapon Tangvarasittichai, Chronic Diseases Research Unit, Department of Medical Technology, Faculty of Allied Health 
Sciences, Naresuan University, Phitsanulok 65000, Thailand, Tel: + ; Fax: +6655966300; Email: 

Introduction
Iron is one of the major functional compo¬nents in many 

proteins, involved in the wide range of vital biochemical 
functions. Iron is also functions as co-factor of enzymes that 
mediate redox reactions for energy production and intermediate 
of metabolisms. The major iron metabolism is on the traditional 
areas of erythropoiesis and nutrition. Iron is also represent as 
a major role in oncology, neurological, cardiology, infectious 
diseases and many pathology diseases. Individual iron status is 
reflected as the combination of pathological diseases, nutritional, 
environmental and genetic factors. Iron may directly bind to 
protein (or as the iron containing) in the form of heme or iron–
sulfur clusters. Normal iron levels ensure ready availability for 
optimal metabolic activity to maintain the normal physiological 
function and immune system. For understanding the degree 
of the changing of normal iron status can predispose to the 
wide variety of disorders. Transition heavy metals including 
ferrous iron (Fe2+) and copper (Cu+) can increase oxidative 
stress, especially in Fe2+ may cause autooxidation to generate 
superoxide (O2•-) and/or to generate hydroxyl radical (OH•) 
by interaction with hydrogen peroxide(H2O2) via the Fenton 
and Harber Weiss reactions [1]. Major cellular oxidative stress 
came from mitochondrial respiration. Heart, brain, kidney, 
liver and skeletal muscle are the major effective organs for 
oxygen consumption. These organs converted oxygen to O2

•- [2].  

 
Electron transport chain in mitochondrial has also been sourced 
to O2

•- [3].

Many research studies demonstrated the association of 
increased oxidative stress with insulin resistance, insulin signals 
dysfunction and adipocytokines dysregulation [4,5]. Type 2 
diabetes mellitus is a common and well described in terms of 
insulin resistance and -cell dysfunction. Recent studies have 
been demonstrated the abnormalities of insulin signaling and 
insulin secretion caused from the activation of stress pathways, 
mitochondrial dysfunction, hepatic fuel homeostasis, and central 
nervous system dysregulation [6-9]. Obesity is the well accepted 
predictor for the disease. Therefore, it is well accepted that the 
most reliable predictor for the disease is obesity. The attention 
has also been paid to the nutrients and the nutrient-sensing 
pathways in the conditions of chronic caloric excess. Most of 
the interest role of nutrients in diabetes risk is attended on 
macronutrients while a micronutrient is iron closely associated 
with diabetes risk. Body iron store elevation has been linked 
to factors of the metabolic syndrome, obesity, dyslipidemia, 
hypertension, hyperglycemia and diabetes [10-14]. The 
association between iron and diabetes were demonstrated that 
the mean (SD) concentration of ferritin was significantly higher 
than controls [109 (105) vs 71.5 (68.7)ng/mL; P<0.001] 
and the mean (SD) ratio of transferrin receptors to ferritin 
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was significantly lower [102 (205) vs 141 (340); P=0.01], 
respectively for developing diabetes [15]. Iron deficiency is also 
associated with obesity, diabetes risk and also with diabetes 
risk for anemia. In this review will briefly summarize the 
homeostasis of iron, iron and oxidative stress, the association of 
excess iron with increased diabetes risk, the effects of iron on 
insulin resistance, iron deficiency and diabetes risk, and anemia 
in diabetes patients.

Iron and oxidative stress

In eukaryotic cells, reactive oxygen species (ROS) was 
produced as the normal aerobic physiological metabolism 
[16]. ROS levels were counter-balanced with the antioxidants 
in the normal physiological conditions. ROS was defined as 
any chemicals those have reactive activities to accommodate 
or donate electrons (e-) to the biological molecules. ROS also 
include instability radicals arise from an unpaired e- [17].

O2 + e + H+ → HO2• (hydroperoxyl radical)

HO2• → H+ + O2•- (superoxide radical)

O2•- + 2H+ + e → H2O2 (hydrogen peroxide)

H2O2 + e → OH- + OH• (hydroxyl radical)

However, at the normal physiological state in the living 
systems, oxygen consumption always produce oxygen-
derived free radicals including O2

•-, OH•, alkoxylradical (RO•), 
peroxylradical (RO2•), peroxynitrite (ONOO-) and oxygen 
derived non-radicals such as H2O2, hypochlorous acid (HOCl) 
and hypobromous acid (HOBr). These reactive molecules (both 
in free radicals and non-radicals) were also played an adverse 
role in the physiological systems as oxidative stress mediated 
cellular damages [18]. In normal condition, neutralization of 
ROS productions by cellular antioxidant defense mechanisms 
was determined as the physiological condition and do not 
causes any oxidative damage [19]. In the imbalance condition, 
over ROS production and reduction of the antioxidant 
defense mechanisms in the living systems can caused cellular 
dysfunction and damage [20]. ROS may also be derived from the 
physiological and biochemical reactions to generate ROS as by-
products or end products. In mitochondrial, electron transport 
chain, peroxisomes and cytochrome P450 system are the major 
sources of ROS production (involves in O2

•- production) [21]. 
Moreover, various enzymes in physiological condition can be 
accelerated ROS production including cyclooxygenases [22,23], 
xanthine oxidase [24], uncoupled nitric oxide synthases (NOS) 
[25-27] and NADPH oxidases [28]. Heavy metals (Fe, Cd, Pb, 
Hg) as the toxic substances [29-32], acrolein, chloroform, 
carbon tetrachloride [33], tertiary butyl hydroperoxide [34-
37], environmental pollutants (oxides of nitrogen, SO2, CO2), 
xenobiotics, UV irradiation and the other factors induce ROS 
overproduction. The transition heavy metals, iron (Fe2+) and 
copper (Cu+) can be produced reactive radicals (oxidative 
stress), especially in Fe2+ may cause autooxidation to cause O2

•- 

generation and/or interaction with H2O2 can generate OH• via 
the Fenton and Harber Weiss reactions [1]. Fenton reaction may 
also be causes lipid peroxides generation and propagation [38].

Auto oxidation of Fe2+: Fe2+ + O2→ Fe3+ + O2•

____________________________________________________________

Fenton reaction: H2O2 + Fe2+→ Fe3+ + OH- + OH•

                                          Fe

Haber-Weiss reaction: H2O2 + O2
•- O2 + OH- + OH•

Iron demonstrated the reversibly oxidized and reduced 
property, it plays the importance role in the pathophysiology of 
disease because of the generation of powerful oxidant species 
via the Fenton and Harber Weiss reactions [39]. Because iron 
participates in the ROS formation then organisms take great 
care of iron handling. Indeed, iron sequestration in transport 
and storage proteins may contribute to antioxidant defenses 
mechanism.

Iron homeostasis
Iron is a major cofactor for energy generation of oxidation 

and electron transport reactions. Iron also cause increased 
oxidative damage when it dys-regulated, sequestered or excess. 
Thus, extensive mechanisms are importance for control the iron 
homeostasis in the body. Iron and physiological metabolism 
connections are well established, even in lower organisms. Iron 
in mammalian organisms is recycled in about rate of 20-25mg/
day through the major site, the erythroid pool as macrophages 
endocytose of the senescent erythrocytes. Approximately 5%-
10% of iron amount per day was taken up through the intestine. 
In mammals, do not have mechanisms for the excess iron 
excretion to regulate iron balance. In equilibrium, losses may 
via the death of the intestinal epithelium and other cells death, 
and the biliary excretion may balance with the intestinal uptake. 
When exceeds uptake to cause excessive iron sequestered 
intracellular. Because the disposal of excess iron in humans was 
the slow process, but the iron uptake from the intestine was 
highly regulated.

At duodenumenterocytes, enzyme ferrireductase duodenal 
cytochrome b (DCTB) reduces ferric iron (Fe3+) from transferrin 
to ferrous iron (Fe2+). Fe2+ ions enter to the cytosol through the 
divalent metal-ion transporter 1 (DMT1 or SLC11A2). Zip14, a 
non-transferrin-bound iron transportercan also enter the cytosol 
through DMT1 [40,41]. Fe2+-DMT1pass through the circulation 
via iron export channel, ferroportin (FPN or SLC40A1). The 
Fe2+ is oxidized to Fe3+ by hephaestin (HEPH) and then, binds 
to transferrin in the circulation. This transferrin can be taken 
into cells via transferrin receptors (TfRs), TfR1 was found and 
mediated iron uptake in most cells. The soluble-transferrin 
receptor, a soluble form of the transferrin receptor bound 
with transferrin, it level is a sensitive indicator for functional 
iron deficiency [42]. Transferrin saturation is the mechanisms 
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to play a major role of iron overload conditions. Most of irons 
were used for heme and iron-sulfur cluster synthesis in 
mitochondria. Iron levels in cytosol were autoregulated via the 
binding with iron regulatory proteins (IRPs). IRPs were released 
from the iron-responsive element (IRE) of the TfR1 messenger 
RNA (mRNA) at the 30 untranslated region (UTR) and at the 
50UTR of the ferritin mRNA and at the UTRs of mRNAs of the 
other iron-regulated proteins when excess iron were occurred. 
Resulting in decreased TfR mRNA stability, further decreased 
iron uptake, increased ferritin translation and sequestering iron 

inside the cell. Then, increased ferritin level is translated to the 
largely free iron as a marker of tissue iron stores. Transferrin-
bound iron can also interacts with the hepatocyte TfR2 and 
HFE protein on the surface of hepatocytes [43] via the signaling 
process including with hemojuvelin (HJV), bone morphogenic 
protein 6 (BMP6) [44,45] and the SMAD (human homolog 
of Drosophila mad) pathway [46] for the stimulation of the 
hepcidin production. TfR2, HJV, HFE, and hepcidin were involved 
in human iron homeostasis demonstration in iron overload by 
human mutations of these proteins. 

Figure 1: Schematic of iron handling: At duodenum enterocytes, ferric (Fe3+) iron is reduced to Fe2+ by DCTB and enters the cell through 
the divalent metal-ion transporter 1 (DMT1).

Hepcidin, a 25 amino acid peptide, an acute-phase reactant 
protein, which is secreted by hepatocytes and acts as a negative 
feedback regulator of iron absorption, it induces internalization 
and degradation of intestinal epithelial ferroportin in circulation 
[47]. Hepcidin also regulates efflux of iron from macrophages, 
express the high ferroportin levels. The releasing of iron from 
the enterocyte is the major control point for iron entry into the 
body. DMT1 is regulated by iron levels, hepcidin-dependent 
mechanisms and hypoxia-inducible transcription factor (HIF)-
2a [48,49]. Dietary heme is directly absorbed through the 
enterocyte pathways and using hemeoxygenase (Hmox) iron 
releasing from heme [50], these were summarized in Figure 
1. While dietary heme is absorbed and iron is released by 
hemeoxygenase (Hmox). Iron exits the enterocyte through 
the iron export channel ferroportin (FPN) and oxidized by 
hephaestin (HEPH) to Fe3+ and binds with transferrin (Tf) in 
circulation. Thereafter, Tf-Fe3+ transported to bone marrow to 

produce heme for erythrocyte production. In the spleen, most 
of the iron was taken up by macrophages via the phagocytosis 
of senescent erythrocytes and also reabsorbed iron by 
systemic macrophages with their specific receptors. CD163 
binds hemoglobin-haptoglobin complexes, CD91 binds heme-
hemopexin complexes, and TfR1 binds Tf-Fe3+. Once bound with 
their receptor, iron is endocytosed and pH changed induces 
iron reduction and release into the cytoplasm. Iron is released 
from cells via Fpn1 and bound with Tf. This Tf-Fe3+ can bind to 
transferrin receptors 1 and 2 (TfR1 and TfR2) on the surface 
of target cells. In most cells, after Tf-Fe3+ bound to TfR1 and 
acidification in endosome, iron was released and reduced by 
STEAP and bind to DMT1 enters the cytosol, where it is used for 
heme or Fe-S cluster synthesis in the mitochondrion. In excess, 
were sequestered by the form of ferritin into the circulation. 
Ferritin level serves as a marker for tissue iron stores. In the liver, 
Tf-Fe3+ binds TfR2 and the protein HFE, GPI anchored protein 
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hemojuvelin (HJV), bone morphogenic proteins (BMP) and the 
SMAD play the concert signal transduction pathway of hepcidin 
production. Hepcidin induces internalization and degradation of 
FPN, thus completing a negative feedback regulatory loop.

For the evaluation of the effects of iron on metabolism, the 
important consideration is the wide normal range of serum 
ferritin in humans, 30-300ng/ml in men and 15-200ng/ml in 
women [51,52]. These serum ferritin levels in humans have a 
10-fold of normal variation, these may not be an ideal normal 
value. Because of the extensive regulation of iron uptake, the 
dietary iron excess can achieve tissue iron levels higher than the 
necessary levels to maintain physiological erythropoiesis and 
metabolic function. For example, in general commercial rodent 
chows, there are the large variations in iron content a factor 
greater than ten times. The bioavailability of iron is considered 
more important than the absolute levels, many chows deliver 
higher iron contents that are consumed by mice living in the wild 
necessary to maintain normal breeding and blood hemoglobin 
concentrations. The same results of the many humans diets. 
Then, within the boundaries of tissue iron levels defined by overt 
iron deficiency and pathological of overload, the broad range of 
normal iron levels may include the levels that confer health risks 
which unaware.

In circulation, there are three main iron forms: Fe3+ bound 
to transferrin (Tf), hemoglobin bound to haptoglobin and heme 
bound to hemopexin. In bone-marrow erythroblasts, iron is used 
for hemoglobin formation in the nascent erythrocytes. Senescent 
erythrocytes are phagocytosed by splenic macrophages. The iron 
is recycled back for the erythroblasts formation, the recycled 
iron by macrophages is a 10-fold higher than the absorbed iron 
from duodenum [53]. Macrophages are responsible for cycling 
iron in many tissues such as spleen, bone marrow, liver and 
lung [54-56]. Macrophages also express the three types of iron 
receptors also present in serum including(i) transferrin receptor 
(TfR1) binds to Fe3+-Tf, (ii) cluster of differentiation 91 (CD91) 
binds to heme–hemopexin, and (iii) CD163 binds to haptoglobin-
hemoglobin (Hp-Hb). These were also demonstrated in.

Iron homeostatic pathways are tightly linked to 
inflammation. This inflammation causes from a significant 
hepcidinupregulation, via interleukin-6 (IL-6), and also results in 
increases serum ferritin levels [57]. Inflammation can cause the 
suppression of intestinal iron uptake, it has been hypothesized 
to be related with the beneficial effect of sequestering iron from 
invading microbes. This may elucidate the link of iron to diabetes 
that links to inflammation [58]. The complexity of the association 
among diabetes, inflammation and ferritin reflect the excess iron 
stores cause diabetes and reflect inflammation causes diabetes 
or both. Furthermore, if iron causes diabetes, the ability of the 
importance mechanisms could be cause oxidant stress and may 
also be linked to inflammation. This evidence suggests that iron 
overload can be cause diabetes.

Role of iron in the induction of diabetes
Evidence of the systemic iron overload in classic hereditary 

hemochromatosis (HH) was frequency increased diabetes 
mellitus. This evidence demonstrated that iron could contribute 
to abnormal glucose metabolism. In the genetic disorders of 
iron metabolism demonstrated iron overload resulting in the 
increased of type 2 diabetes. The role of iron in the pathogenesis 
of diabetes is uncertain but increased of type 2 diabetes in 
diverse causes of iron overload and improvement in diabetes 
with reduction in iron load by using iron chelation therapy. 
Recent studies demonstrated the association between increased 
dietary iron intake (eating red meat) and increased body iron 
stores with development of diabetes. These studies suggested 
frequent blood donation and decreased iron stores improve 
insulin sensitivity and insulin secretion [59,60]. Although 
the exact mechanism of iron-induced diabetes is unclear, it is 
likely to mediate by four key mechanisms: (i) oxidative stress 
and inflammation, (ii) insulin resistance, (iii) insulin deficiency 
and (iv) hepatic dysfunction. For the understanding of the 
pathogenesis of iron-induced diabetes pathways was derived 
from the animal models of hemochromatosis. In mouse model 
characterize of iron excess and oxidative stress mediate apoptosis 
of pancreatic islets resulting in decrease capacity of insulin 
secretion [61]. Pancreatic islets were caused oxidative damage, 
and may cause dysregulation of mitochondrial metabolism of 
glucose for glucose-induced insulin secretion and increased 
antioxidant defense using and low expression of the antioxidant 
defense system [62]. Increased expression of the divalent metal 
transporter proteins may addition with more accumulation of 
iron than other cells and potentiates with increased risk from 
iron catalyzed oxidative stress [63]. In study on transfusion-
dependent -thalassemic/HbE patient demonstrated the 
association of iron over load, increased oxidative stress, hepatic 
damage, dyslipidemia [64]. 

Figure 2: Schematic pathway of the iron induces oxidative 
stress and diabetes pathogenesis.

Oxidative stress plays an important role of the numerous 
pathologies in cardiovascular diseases, cancer and degenerative 
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disease [65]. Oxidative stress is the deleterious factor leading 
to insulin resistance, β-cell dysfunction, impaired glucose 
tolerance, and type 2 diabetes mellitus [66,67]. McClain et 
al. [68] examined the high prevalence of abnormal glucose 
homeostasis in individuals with hemochromatosis by using 
glucose tolerance tests. They found that these hemochromatosis 
patients demonstrated not only impaired insulin secretion but 
also insulin resistance. Insulin resistance and impaired insulin 
secretion may cause from iron overload or through hepatic 
dysfunction [69]. The schematic of these processing were 
summarized in Figure 2.

Transfusional iron overload and diabetes risk 
The most common acquired iron overload is typically 

found in transfusion-dependent -thalassemia. Because of 
the ineffective erythropoiesis, decreased or impaired β-globin 
biosynthesis in β-thalassemia plays a crucial role in oxidative 
stress production [70]. Moreover, the heme-iron can free to 
generate H2O2 via the Fenton reaction. Anemia and excessive 
ROS are the hallmark of thalassemia [71]. Indeed, ROS and 
peroxidative tissue injury in these patients represent an 
unavoidable complication accelerated multi-organ damage, 
especially in excess iron accumulationin organs, such as liver, 
pituitary gland, pancreas and heart. Increased oxidative stress 
is the deleterious factor leading to insulin resistance, β-cell 
dysfunction, impaired glucose tolerance, and type 2 diabetes 
mellitus [66,67]. Many studies demonstrated impaired glucose 
tolerance and its progression towards overt diabetes mellitus 
which depended on the severity and duration of iron overload 
in β-TM patients [72-75]. These patients are often detected as 
impaired glucose tolerance in the second decade of life. In the 
study of Chern et al., they found 19.5% with diabetes and 8.5% 
with impaired glucose tolerance of the 80 transfusion-dependent 
-thalassemia patients and demonstrated high serum ferritin 
and hepatitis C (HCV) infection as the risk factors for impaired 
glucose tolerance and type 2 diabetes mellitus [75]. While 
insulin deficiency may cause from iron accommodation in the 
interstitial pancreatic cells caused excess collagen deposition, 
obstructive the microcirculation and insulin resistance [76,77]. 
Glucose tolerance up to one-third of these patients was improved 
by intravenous or oral chelation treatment, these suggested the 
causal role of iron [78,79]. Our recent study demonstrated that 
transfusion-dependent -thalassemia patients associated with 
iron overload, oxidative stress, and hyperinsulinemia or insulin 
resistance [80]. Loebstein et al. [81] demonstrated the direct 
role of iron-derived free radicals mediating organ damage of in 
transfusion-dependent diabetes patients with increased lipid 
peroxidation accelerated diabetic nephropathy onset. 

Iron deficiency and diabetes risk 
Approximately 75% of iron in human body is associated 

with hemoglobin, iron protein containing is responsible for 
oxygen transport of red blood cell (RBC). Anemia is a pathologic 

condition of decrease mass or amount of hemoglobin in red 
blood cell. Iron deficiency anemia (IDA) is the most common 
nutritional problem about 30 percent of people throughout 
the world [82]. Iron deficiency limits the synthesis of heme 
(a prosthetic group of hemoglobin) in the body, limits of 
hemoglobin synthesis and decreases the RBC production 
resulting in anemia. These are also affected the cellular energy 
metabolism of oxygen dependent. Iron deficiency also affects all 
of the Fe2+ containing proteins production such as myoglobin, 
catalase (CAT), peroxidase and cytochromes [83]. Anemia has 
a wide range of clinical consequences, especially in severe 
iron deficiency is a decrease RBCs- life span in circulation, it 
exacerbates the anemic condition [84-89]. The ID-RBCs were 
increased membrane stiffness and decrease in deformability, 
these may accelerated macrophages recognition [90-92], which 
decreases the ability of ID-RBCs to pass through the spleen 
without being removed. The deformability decreasing in ID-
RBCs can increase cytosolic calcium levels which increase the 
ID-RBCs membrane stiffness to attribute oxidative stress [93-
95]. Recent studies demonstrated the ID can accelerate RBCs 
eryptosis by increased the phosphatidylserine residue on the 
outer surface membrane for macrophages recognition resulting 
in the removed RBCs from circulation [89,93]. However, ROS of 
RBCs are one of the importance factors of anemia. ROS elevation 
in RBCs can occur either by activation of ROS production or by 
suppression of antioxidant or redox system. When RBCs cause an 
excessive ROS production, oxidative stress develops. Generally, 
50% of anemia cause from iron deficien¬cy. More recent studies 
demonstrated that reduced iron stores were associated with 
increased glycation (hemoglobin A1C; HbA1c) [96-98]. 

Animal models: In ID-animal models were demonstrated 
glucose and lipid metabolism al¬terations. ID-animals 
present signs of the metabolic homeostasis disruption such as 
insulin signaling alterations evidenced of hyperinsulinemia, 
hyperglycemia and hyperlipidemia. Decreasing in oxidative 
capacity causes a shift in fuel utilization from fat to glucose 
[99-102]. These signs appeared as response grading associated 
with the hemoglobin reduction. However, in the non-severe 
hemoglobin reductions are not correlated with hyperglycemia 
and hyperlipidemia. These findings may suggest that these 
may have a certain threshold exists in order to develop these 
potentially negative meta¬bolic consequences [103-106]. 
However, other studies, in the moderate in¬duction of iron 
deficiency in ro¬dents are sufficient to disrupt normal metabolic 
homeostasis, to cause glucose and insulin elevations in both 
steady-state levels with the basal diet for-mulation in the ID-
animals. High cortisol secretion, the secondary of the stress of 
anemia status, is not responsible for the hyperglycemia, while 
hyperglycemia was associated with de¬crease cortisol levels in 
the ID-animals [104-109]. 

The other studies demonstrated the hepatic genes expression 
was involved in stabilized glucose homeosta¬sis during ID. 
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These studies demonstrated ID rats in each group had significant 
alterations in genes expression of glucose metabolism [110]. 
These gene expressions are also include those genes involve d 
in glycolysis and gluconeogenesis of metabolic pathways. The 
increasing of glucokinase (Gck) gene expression in ID-animals 
is relative increase insulin levels in cir¬culation. This insulin is 
the inducer of the hepatic Gck mRNA ex-pression. Increased Gck 
expression has been shown increased on the glucose levels as a 
metabolic substrate, to increase glucose phosphorylation rate in 
the liver, responsible for blood glucose elevations. Furthermore, 
Gck may involve in the multiple pathways such as glycogen 
synthesis, glycolysis, and de novo lipogenesis which may explain 
the enhancing of the glucose utilization and hyperlipidemia 
in the responsible to dietary ID-animals [110-116]. In the 
studies of metabolic gene expression alterations indicate an 
impaired hepatic insulin response in ID-animals, exhibited as 
insulin resistance. In this model, rapamycin complex 1 act as 
target of insulin to cause lipogenesis activation via the sterol 
regula¬tory element-binding protein-1c, while diminished 
insulin-induced phosphorylation of forkhead box protein O1 
the transcription factor, inappropriate the glu¬coneogenic gene 
expression. Thus, mixed insulin resistance demonstrates as the 
candi-date mechanism responsible for these hyperglycemia and 
hyperlipidemia in ID-animals [117-122].

Human studies: Iron deficiency, the most common 
mi¬cronutrient deficiency remains in the world. General 
symptoms of IDApatients such as weakness, fatigue, impaired 
immune function, and reduced cognitive function, especially in 
children. Serum level of fer¬ritin was reflected the accurate iron 
status in the body. Many studies demonstrated the association 
of the reduction of iron stores with hemoglobin A1C (HbA1c) 
elevation. Many studies demonstrated the association of ID/IDA 
with the alteration of blood glucose, HbA1c and insulin levels 
[99,123,124].

Non-diabetic patients with IDA
In the cor¬rection of IDA study, 54 non-diabetic 

premenopausal women with IDA were corrected the Hb 
concentration from of 9.9±1.8g/dL to 13.1±1g/dL demonstrated 
fasting insulin reduction, insulin resistance and also found the 
positive correlation of fasting insulin levels with hemo¬globin 
levels after treatment [125]. The non-diabetic patients with 
IDA patients demonstrated the signifi¬cant reduction of HbA1c 
values after iron treatment [126,123]. While the study of 
Gram Hansen et al. [127] demonstrated normal HbA1c levels 
in IDApatients were dropped to subnormal levels after iron 
treatment. Many research studies were also demonstrated the 
association of HbA1C reduction with erythrocyte indices and 
iron metabolic indices after iron treatment [97,98,128,129].

IDA and type 2 DM patients
Many research studies demonstrated the association 

between IDA (patients with Hb: =9.4±1.3g/dL) with HbA1c 

levels, especially in dia¬betic women having FPG between 
100-126mg/dl, or diabetic chronic kidney disease, or diabetic 
pregnancy with IDA (Hb≤10.5g/dl), which was reduced 
following iron treatment and increased Hb level [96,130-133]. 
Anemia in diabetic patient is always present as a biomarker 
for disease progression, the co-morbidities develop¬ment and 
quality of life. Hemoglobin (Hb) levels reduction may indicate 
increased risk of the renal disease progression. In type 1 diabetes 
mellitus, anemia is associated with micro- and macrovascular 
complications, the role of anemia may involve in the progression 
of these complications [133-136]. From the direct relationship 
of anemia and diabetic kidney disease, type 2 diabetes patients 
had reduced Hb levels to identify patients with increased risk for 
renal disease progression [132].

Anemia may play importance role in the mitogenic and 
fibrogenic process in kidney and the heart, these may associated 
with growth factors, hormones, and vasoactive reagents 
expressions. Many of these agents were involved in diabetic 
mi¬crovascular disease. Because RBCs act as importance 
antioxidant component in the circulation, thus, IDA patients 
had increase oxidative stress [132-135]. IDA patients are 
associated with increased oxidative stress and demonstration 
of increased triglycerides, decreased high-density lipoproteins 
(HDL) particles [136] and increased cholesteryl ester transfer 
protein (CETP) activity. IDA patients demonstrated lower 
arylester¬ase activity of paraoxonase-1 (PON-1) after received 
iron supplementation improved arylesterase activity of PON-1 
and decreased malondialdehyde levels [136,137].

Anemia in diabetes patients
Type 2 diabetes mellitus is associated with increased oxidative 

stress and inflammation. Increased inflammatory cytokines plays 
the major role in insulin resistance and cardiovascular diseases 
risk as the micro- and macrovascular diabetic complication, 
renal disease and anemia. Interleukin-6 (IL-6) can limit the 
sensitivity of erythropoietin; an erythroid growth factor and also 
promotes immature erythrocytes apoptosis. The progression of 
nephropathy may effect erythropoietin reduction contributing 
the deterioration to anemia. Thus, diabetic patients with renal 
disease are at high risk for anemia. Many research studies 
reported the prevalence of IDA is signifi¬cant in type 2 diabetes 
mellitus patients, espe¬cially with nephropathy [138-142]. 
The clinical relevance of the effect of iron deficiency on glucose 
metabolism and HbA1c is still not elucidated. The reduction of 
iron ab¬sorption and gastrointestinal bleeding were the diabetic 
complications caused anemia [96-98].

Metformin, an antidiabetic drug is the most common 
prescription for diabetic patients. It may cause the adverse 
effects including diarrhea, dyspepsia, poor appetite, vomiting, 
lactic acidosis, and metallic taste. Long-term use of metformin 
may increase vitamin B 12 deficiency that has been indicated 
as a cause of hemolytic anemia [143]. However, drug-induced 
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immunehemolytic anemia (DIHA) can be caused by many 
different mechanisms. Many drugs bind with proteins on the 
RBC membrane by covalent bond to cause hemolytic reaction on 
the presence of the drug and ceases shortly after discontinuation 
[144]. The DIHA is the immune complex reaction, which 
antibodies were formed to combine with proteins on RBC 
membrane and drugs to activate the complement resulting in 
acute intravascular hemolysis, DIHA may associate with drug-
independent antibodies, these antibodies do not need drug to 
present in vitro reactions (e.g. fludarabine). Drug affects the 
immune system by causing the RBC autoantibodies production 
[144]. Although antibodies against the drug cannot be detected, 
based on the negative Coombs test with complement and no 
continuous hemolysis after the cessation of metformin, this 
hemolysis reaction was a drug-dependent reaction. A few cases 
of metformin-induced hemolysis were reported [143,145-
148]. The recommendation on drug-induced hemolytic anemia, 
is to discontinue the potential drug treatment. In severe 
hemolysis case, may be operated further by RBC transfusion or 
plasmapheresis or dialysis in patients with renal failure [149]. 

Conclusion
Iron demonstrated the reversibly oxidized and reduced 

property, it play the importance role in the pathophysiology 
of disease by the generation of powerful oxidant species via 
the Fenton and Harber Weiss reactions. Oxidative stress is 
the deleterious factor leading to insulin resistance, β-cell 
dysfunction, impaired glucose tolerance, and type 2 diabetes 
mellitus. Human research and animal experimental studies have 
established the association of iron stores with diabetes risk. 
Many research studies suggest the relationship between higher 
iron and caused diabetes and iron demonstrate the multiplicity 
of effects in many tissues runs from iron deficiency to iron 
excess. The phenotypes of iron excess might be particularly 
prone to increase oxidative stress resulting insulin resistance 
and -cell failure to cause insulin deficiency causing diabetes. 
Iron deficiency also affects all of the Fe2+ containing proteins 
production such as myoglobin, catalase (CAT), peroxidase and 
cytochromes. Oxidative stress elevation in RBCs can occur 
either by activation of ROS production or by suppression of 
antioxidant or redox system. ID-subjects present signs of the 
metabolic homeostasis disruption such as insulin signaling 
alterations evidenced of hyperinsulinemia, hyperglycemia 
and hyperlipidemia. These produce the possible of excess iron 
stores and ID/IDA contributes to cause diabetes. For further 
research is needed regarding the cut-off point for serum ferritin 
concentration in diabetes patients, and the affecting of body iron 
stores to cause insulin resistance, vascular resistance, blood 
viscosity and oxidative damage.
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