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Introduction
Iron is a micronutrient involved in many organic functions. 

It is essential for the oxygen transport and participates in 
numerous enzymatic systems related to cellular respiration, 
synthesis of DNA, RNA and proteins, as well as others involved 
in antioxidant defense and immunity. However, since iron is 
both an electron donor and acceptor, it has the potential to 
generate free radicals [1,2]. Iron status is regulated at the level 
of absorption, and numerous ingested food components can 
enhance or inhibit its bioavailability [3] (Figure 1, number 1). 
Iron deficiency anemia affects health and life quality and may 
produce growth retardation and decreases in physical and 
intellectual performance with the subsequent public health 
and socioeconomic impacts [3]. Homeorretic mechanisms  

 
exist to adapt the body to the iron deficiency. When body iron 
should be increased, hepcidin -a hormone that blocks iron 
transport from the intestine and storage cells (eg. hepatocytes 
and macrophages) to the blood- is downregulated in order to 
increase net absorption and maintain functional iron [2,3]. In 
this condition, iron supplementation and the consumption of 
iron-fortified foods can effectively restore this metal status [3-7].

At the other extreme, excess of iron may be more harmful 
to the body than iron deficiency. Thus, patients with primary 
hemochromatosis or hemochromatosis secondary to massive 
transfusions develop diabetes and abdominal obesity [8-10]. In 
these patients, phlebotomies and iron chelators improve blood 
glucose and insulin sensitivity [11,12] but the mechanism by 
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Abstract

The prevalence of cardiometabolic diseases is increasing all over the world. Insulin resistance has been proposed as one major factor of the 
Metabolic syndrome (MetS) that ultimately leads to type 2 Diabetes Mellitus (T2DM). The relationship between iron status and MetS has been 
scarcely described. This mini-review presents on one hand the existing knowledge on the effects of excess body iron (iron overload) on insulin 
resistance and on the other the link between hyperglycemia and alterations in iron metabolism. When the binding capacity of serum transferrin 
exceeds normal levels, free-iron induces the formation of reactive oxygen species (ROS) which may increase oxidative stress and cause tissue 
damage. In addition, ROS have been linked to insulin resistance, reduction in adiponectin release, and non-alcoholic fatty liver, among others. It 
is also discussed that as a consequence of glucose excess, transferrin, as other proteins, becomes glycated decreasing its iron binding capacity 
resulting in elevated free-iron levels and the consequent deleterious effects. As in both, T2DM and hemochromatosis patients, a significant 
high ferritin-dyslipemia relationship has been reported, present review hypothesizes that iron stored as “ferritin” partially escapes to plasma 
contributing to the vicious circle. Increases in liver free fatty acids availability and gluconeogenesis aggravate insulin resistance, giving rise to 
adyslipemic profile. Nonetheless, several points and action mechanisms are still poorly understood and require more studies to elucidate the 
role of iron in the etiology of cardiometabolic diseases. Finally, it is suggested that subjects predisposed to cardiometabolic diseases and/or to 
accumulate iron should limit the prolonged consumption of iron supplements or iron fortified foods. Strategies to decrease the bioavailability of 
iron in such vulnerable population groups, such as recommending high vegetable diets, deserve future investigation.
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which this improvement occurs has not yet been well elucidated. 
The initial physiologic adaptation to high iron intakes is to store 
this metal in the enterocyte of the intestinal barrier in the form 
of ferritin; thus, the non-absorbed iron can be eliminated by 
desquamation of the intestinal mucosa that is renovated every 
three to four days [13] (Figure 1, number 2). This mechanism 
is highly dependent on hepcidin function at the basolateral 
membrane. However, once iron is absorbed, iron excess is 

not efficiently regulated by excretion mechanisms, as serum 
transferrin becomes saturated and the excess occurs as non-
transferrin bound iron (NTBI) that may induce the formation of 
reactive oxygen species (ROS) and result toxic (Figure 1, number 
3) [13]. Thus, tissue iron overload is a major threat and can 
cause metabolic alterations that lead to cardiovascular disease, 
diabetes, hepatic damage, and kidney disease [2].

Figure 1: Hypothesis linking insulin resistance with iron overload.
1. Iron status is regulated at the level of absorption. Numerous ingested food components can enhance (e.g. vitamin C) or inhibit (e.g. 
tannins) its bioavailability. 
2. The non-absorbed iron can be eliminated by desquamation of the intestinal mucosa. 
3. Iron excess is not efficiently regulated by excretion mechanisms, as serum transferrin becomes saturated and the excess occurs as non-
transferrin bound iron (NTBI). 
4. Transferrin glycation decreases its ability to bind ferric iron, and consequently increases the free-iron pool and enhances oxidative 
damage. 
5. Iron contributes to form reactive oxygen species (ROS) in tissues and may result toxic. 
6. Insulin resistance limits cellular glucose uptake and induces liver neoglucogenesis contributing to hyperglucemia. 
7. Iron excess increases the presence of free fatty acids, major gluconeogenesis substrates contributing to increase even more the liver 
insulin resistance and the hyperglycemia. 
8. Adipocyte iron overload. Visceral and subcutaneous fats locally increased hepcidin expression. 
IR: Insulin Resistance, FFA: Free Fatty Acids; ROS: Reactive Oxygen Species

Hyperglycemia, high glycated hemoglobin and advance 
glycation products are consistent features in non-controlled 
diabetes and appear involved in the pathology of T2DM and 
insulin resistance [14,15]. Regarding the iron connection, it is 
known that transferrin glycation decreases its ability to bind 
ferrous iron, and consequently increases the free-iron pool and 
enhances oxidative damage [16] (Figure 1, number 4). Oxidative 
stress itself induces insulin resistance, which contributes to 
maintain a vicious circle [17]. Significantly higher liver iron 
concentrations, determined by magnetic resonance, have been 
observed in prediabetic (100-126mg/dL glucose) compared 
to control subjects (40.6 vs 27.8 µmol/g, respectively) [18]. 
Similarly, increases in iron storage, determined by serum 

ferritin, have been shown in other prediabetic situations [19,20], 
in the Metabolic syndrome (MetS) [21-23], and in non-alcoholic 
steatohepatitis (NASH) that frequently is observed in the MetS 
[24]. Once again this relationship has been confirmed in a recent 
meta-analysis [25]. In addition, the probability to be diagnosed 
of prediabetes in individuals classified in the 4th quartile for 
ferritin values vs those of the 1st quartile was 2.08 times higher 
(95% CI 1.43-3.04) [26]. Similar results were previously observed 
by the National Health and Nutrition Examination Survey 
(NHANES) 1999-2002 [27]. Iron action mechanisms intervening 
in cardiometabolic diseases are not completely understood. The 
most accepted hypothesis is the one that relates the pro-oxidant 
character of iron with ROS production (Figure 1, number 5), 
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that increases the oxidative stress in several organs as the liver 
and arterial wall, as reviewed previously [2]. The ROS increase 
would also affect β-pancreatic cell reducing insulin synthesis 
and secretion [28]. Another potential mechanism may involve a 
decrease in insulin sensitivity of peripheral tissues, situation that 
limits cellular glucose uptake, leading to preference for fatty acid 
oxidation [29] (Figure 1, number 6). Consequently, iron excess 
increases the presence of free fatty acids, major gluconeogenesis 
substrates contributing to increase even more the liver insulin 
resistance and the hyperglycemia (Figure 1, number 7) [29].

Adiponectin has been recognized to increase insulin cell 
sensitivity [30]. Interestingly, iron excess reduces adiponectin 
expression, contributing to decrease its synthesis by adipocytes. 
In this regard, knockout mice which did not express ferroportin 
(an exporter protein) in their adipocytes (Fpn1 -/-) and showed 
adipocyte iron overload, presented decreased adiponectin 
synthesis and marked insulin resistance [30]. In addition, 
visceral and subcutaneous fats of obese patients locally 
increased hepcidin expression and reduced transferrin receptor 
expression, suggesting altogether an adipocyte iron overload in 
obese patients (Figure 1, number 8). The increment in hepcidin 
expression in the adipose tissue of these patients inversely 
correlates with the adiponectin expression and directly with 
the insulin resistance [31]. These results agree with previous 
studies in which adipose tissue and muscle contain higher 
iron concentration measured by magnetic resonance analyses 
in obese than in non-obese patients [32,33]. In mouse models 
it has been found that hepcidin is induced by gluconeogenic 
signals [34,35]. It appears therefore that hepcidin expression 
tends to preserve tissue iron for vital activities during starvation. 
However, Vecchi et al. [35] suggested that if the condition of 
gluconeogenesis persists, excess iron may be harmful. Other 
authors suggest that the double insulin resistance-hepcidin 
resistance may explain the involvement of iron in diabetes, 
obesity, and fatty liver disease [2].

Finally, dyslipemia has been considered a central factor of 
cardiometabolic diseases. Regarding the connection between 
low body iron and lipids, it is known that anemia leads to low 
levels of circulating triglycerides and total cholesterol, which 
recover with the reversal of anemia [36]. Yet, the iron hypothesis 
published by Sullivan in Lancet in the 80’s of the previous 
century relates the lower incidence of cardiometabolic disease 
in women with their lower body iron content [37]. In contrast, 
we have found in diabetics a correspondence between serum 
ferritin, marker of body iron, and various lipid alterations [2]. 
Moreover, several studies and a meta-analysis consistently show 
that T2DM patients present moderate to high levels of serum 
ferritin [38-41]. Our results from 595 diabetics belonging to 
the DICARIVA study clearly show that patients included in the 
highest quartile for ferritin showed higher triglyceridemia 
and lower cholesterol carried by High Density Lipoproteins 
(HDL-cholesterol) than those at the lowest ferritin quartile 
[2]. Differences were higher in men than in women suggesting 

some gender effect and additional link with the iron hypothesis 
previously commented [37]. Furthermore, diabetics belonging to 
the 4th quartile of ferritin show higher triglycerides/HDL molar 
ratio, suggesting the presence of smaller and more atherogenic 
Low Density Lipoproteins (LDL), vs those of the 1st quartile of 
ferritin (Figure 1, number 9). Time ago we found a significant 
relationship between iron levels in umbilical cord blood and 
HDL-cholesterol [42], suggesting the demand of this particle 
to reduce peroxidation risk at birth. On the other hand, some 
studies and meta-analysis have demonstrated a relationship 
between dietary iron intake, particularly heme iron or red meat 
and T2DM development [43-45]. Interestingly, the increased 
consumption of iron supplement during pregnancy has been 
related to gestational diabetes [46-48]. This observation 
may have important repercussions due to the general 
recommendation of increasing iron intake during pregnancy to 
prevent anemia [49]. It should be taken into account that iron 
absorption is enhanced in pregnancy and that there are no iron 
losses due to menstruation. Therefore, the implication of excess 
iron supplementation on gestational diabetes has nutritional, 
etiologic, metabolic, clinic and therapeutic importance and 
deserves special attention.

With this scientific background, phlebotomies have been used 
trying to treat diabetes and prediabetes. In a study conducted 
in patients with nonalcoholic steatohepatitis, phlebotomies 
decreased insulin concentration, insulin resistance and 
improved lipid levels [50], but no positive effects were observed 
in another randomized study [51]. Results from a randomized 
study conducted in a group of 64 MetS patients showed that 
those subjected to phlebotomies showed a significant decrease 
in blood pressure, glycaemia, glycosylated hemoglobin and 
cardiovascular risk index [52]. It is a widely accepted fact that 
iron depletion by phlebotomies prevents the onset of T2DM in 
patients with hereditary hemochromatosis. In addition, insulin 
resistance has been shown to decrease among blood donors [6]. 
Finally, a subsequent study conducted in 28 high ferritin diabetic 
men randomized 13 of them to perform 3 phlebotomies. At 4 
months, a decrease in the glycated hemoglobin (HBA1c) levels, 
in the secretion of insulin and an increase in insulin sensitivity 
was observed in the phlebotomized group [53,54]. Taking into 
account all commented studies, it seems clear that iron status 
is clearly related with the cardiometabolic disease. However, 
at present we are not ready to answer the question of whether 
the relationship is direct or indirect as several factors act 
simultaneously. Nonetheless, some studies highlight the idea 
that reducing iron levels (e.g. decreasing iron absorption) could 
improve insulin resistance and prevent deleterious effects on 
the oxidative status mediated by iron overload. Although some 
cardiometabolic pathologies are associated to oxidative stress 
and chronic inflammation, new reports indicate that iron may 
also play direct actions in a number of metabolic routes. In this 
regard, the convenience to use high protein diets which are rich 
in iron in the treatment/prevention of obesity and/or MetS 
seems at least reviewable. In addition, we think that the excessive 
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intake of products that increase iron bioavailability might be 
controlled (e.g. vitamin C, heme iron, iron fortified food) in the 
frame of a high iron content diet. As we exactly do not know if 
such iron excess induces insulin resistance and hyperglycemia 
or if the hyperglycemia followed by hyperinsulinemia and 
insulin resistance is caused by transferrin glycation, we 
recommend decreasing the hemo availability in people affected 
by MetS non-affected of anemia through increasing the daily 
intake of vegetables. Thus, eating more vegetables would permit 
to a) decrease the intake of foods with high iron content; b) 
increase the intake of low iron bioavailability food; c) increase 
consumption of phenolic compounds and antioxidant vitamins 
that would contribute to decrease the prooxidant status of T2DM 
or MetS patients.
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