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Introduction
Bile acids (BAs) possess an amphipathic steroid molecule 

which may facilitate the intestinal absorption, emulsification, 
and transport of lipophilic nutrients and vitamins. Ba is mainly 
derived from the catabolism of cholesterol in the liver. Recently, 
BA has been introduced as the endogenous molecules showing 
pleiotropic responses [1], including glucose and energy 
homeostasis [2]. Some BAs scape the enterohepatic cycling to 
reach the systemic circulation [3]. Thus, they participate the 
functional processes such as lipid and glucose homeostasis, energy 
expenditure, intestinal mobility, inflammation [4], configuration, 
and the growth of gut microbiome or the skeletal muscle mass 
[5]. Dysregulated signaling of BAs have been indicated to involve 
in some disorders, including diabetes, obesity, dyslipidemia, fatty 
liver disease, atherosclerosis, cholestasis, gallstones, and cancer 
[6]. Basically, these effects of Bas were known to binding with the 
nuclear hormone farnesoid X receptor (FXR) and Takeda G protein 
receptor 5 (TGR5) in multiple organs [7]. In clinics, treatment of 
T2DM patients with the BA-like agent(s), or bariatric surgery 
in obese patients, results in a marked improvement in glycemic 
control that seems related with the changes in TGR5 and signaling. 
Therefore, we focus on the role of TGR5 in glucose homeostasis.

TGR5 belonged to G protein – coupled receptor that expressed 
in many tissues such as intestine, gallbladder, adipose tissues, 
skeletal muscle, brain, and pancreas. Therefore, TGR5 activated 
by BA induces the formation of the cyclic AMP (cAMP), which  

 
may activate protein kinase A (PKA) in cells and tissues [8]. 
Tauro-lithocholic acid (TLCA), lithocholic acid (LCA), deoxycholic 
acid (DCA), chenodeoxycholic acid (CDCA), and cholic acid (CA) 
can dose-dependently induce cAMP production in human TGR5- 
transfected CHO cells. The rank order of potency (EC50) is TLCA 
(0.33 μM) >LCA (0.53 μM) >DCA (1.01 μM) >CDCA (4.43 μM) 
>CA (7.72 μM), as described previously [9]. However, CDCA, DCA, 
LCA, ursodeoxycholic acid (UDCA) may also activate FXR [10]. 
Otherwise, TGR5 is also activated by linolenic acid and oleanolic 
acid [11], in addition to ursolic acid [12] and glycyrrhizic acid 
[13]. Additionally, we demonstrated triamterene as the useful 
blocker of TGR5 [14].

Oral glucose administration induces a more pronounced 
insulin secretion than an isoglycemic intravenous injection. 
Therefore, entero-endocrine K- and L-cells are identified and 
known to secrete the incretins, both glucose-insulinotropic 
polypeptide (GIP) and glucagon-like peptide (GLP)-1. After 
transcription and translation into proglucagon, the action of 
prohormone convertase 1/3 in L-cells leads to GLP-1, GLP-2, 
oxyntomodulin, and IP2, whereas the action of prohormone 
convertase 2 in pancreatic α-cells leads to glucagon, glicentin-
related polypeptide, IP1 and major proglucagon fragment [15]. In 
blood, GLP-1 half-life is about 1·5–5 min due to a rapid degradation 
by dipeptidyl peptidase 4 (DPP-4). Thus, DPP-4 inhibitors are 
successfully used to treat type 2 diabetes (T2DM) patients now. 
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Abstract

The bile acid binding receptor TGR5 is suitable as a new target for the handling in metabolic disorders, including type 2 diabetes, obesity, 
and fatty liver. TGR5 is known to express in various tissues, but the enterohepatic cycling limits bile acid to activate the receptors. The preclinical 
data demonstrated the merits of TGR5 activation in cases such as weight loss, glucose regulation, energy metabolism, and the lowering of 
inflammation. Studies in animals indicated the important role of Tgr5 in GLP-1 secretion, insulin sensitivity, and energy metabolism. However, 
evidence regarding these effects in clinical practice is still not enough. Therefore, we call the development of safe and selective TGR5 agonist(s) 
using the distinguished subtype of TGR5 in the near future.
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Activation of TGR5 promotes GLP-1 secretion from intestinal 
L cells due to a closure of the ATP-dependent potassium channel 
(KATP) and a higher mobilization of intracellular calcium 
to enhance GLP-1 secretion. Glucose also enhances GLP-1 
biosynthesis and secretion. However, GLP-1 secretion by intestinal 
L cells is negatively regulated by FXR through inhibition of pro-
glucagon gene expression and suppression of GLP-1 secretion 
through the interfering with pathways activated by glucose [16]. 
Therefore, BA activation of both TGR5 and FXR in intestinal L cells 
can induce opposite effects on GLP-1 secretion and production. 
However, TGR5 activation in L cells likely occurs rapidly after 
food ingestion, whereas activation of FXR induces a more delayed 
response that requires transcriptional activation. Otherwise, 
pancreatic β cells express both TGR5 [17] and FXR [18], promoting 
glucose-stimulated insulin secretion by increasing intracellular 
calcium concentration. In pancreatic islet, TGR5 is identified in 
pancreatic α cells. Activation of TGR5 switches the α cell secretory 
phenotype from glucagon to GLP-1, thus promoting a paracrine 
effect on β cells to stimulate insulin secretion [19]. 

T2DM is known as a heterogeneous group of disorders, 
characterized by a decline in insulin-producing pancreatic β cells, 
an increase in peripheral insulin resistance, an increase in hepatic 
glucose production, or a combination of all the factors [20]. 
Therapies for T2DM are mostly focused on the reducing of hepatic 
glucose production, increasing of insulin secretion, and improving 
insulin sensitivity [21]. TGR5 as a receptor of bile acids has an 
effect on the regulation of glucose homeostasis. Activation of TGR5 
could promote GLP-1 secretion in a murine enteroendocrine cell 
line STC-1 [8].

GLP-1 has the ability to enhance insulin secretion after 
oral administration of glucose. It suggested the potential 
treatment of T2DM through the management of glucose 
homeostasis by activatingTGR5. Additionally, TGR5 can induce 
cAMP-dependent thyroid hormone activating enzyme type 2 
iodothyronine deiodinase, causing elevated energy expenditure 
in brown adipocytes and skeletal muscles [22]. TGR5 also induces 
differential translation of the C/EBPb isoform by AKT-mTOR 
pathway in macrophages. Thus, activation of TGR5 can alter 
adipose tissue macrophage function to improve insulin action for 
treatment of T2DM [23]. Another mechanism possibly connecting 
TGR5 signaling and elevated energy expenditure via modifications 
in the gut microbiome [24]. Therefore, TGR5 activation for 
T2DM is not totally dependent on GLP-1 only. Moreover, TGR5 
inhibits renal disease in obesity and diabetes through inducing 
mitochondrial biogenesis and preventing renal oxidative stress 
and lipid accumulation [25]. The new roles of TGR5 in obesity has 
also been documented [26].

Systemic exposure to TGR5 agonists increases gallbladder 
volume in mice [27]. Recently, an agonist of TGR5, FC-92-EC85, 
has been investigated in mice and dogs showing hepatobiliary and 
cardiovascular effects limit the utility of systemic TGR5 agonist 
in Diabetes [28]. a novel topical intestinal agonist of TGR5 that 
was given orally to obese and insulin-resistant mice, leading 

to a prominent elevation in GLP-1 levels along with significant 
improvement in glucose tolerance. Intestinal TGR5 agonist did 
not cause a significant change in gallbladder size in lean mice 
[29]. Thus, an ideal TGR5 agonist would be intestinal-specific 
agonist reaching L cells without affecting other systemic tissues 
[7]. However, the impact of the intestinal TGR5 agonist on human 
gallbladder remained unclear and the therapeutic potential for 
T2DM in the clinic needs to confirm in advance.

Conclusion
Decreased pruritus in cholestatic liver disease, improvement 

of insulin resistance in type 2 diabetes, protection against obesity, 
and inhibition of atheroma development have been suggested as 
the potential therapeutic targets of TGR5 agonist(s). However, 
it still remains in animal studies. Clinical trials are required to 
confirm whether the new semi-synthetic TGR5 agonists have 
clinical efficacy. Additionally, once the subtype TGR5 could be 
distinguished between the gallbladder and metabolic tissues, 
development of new agonist(s) would be easier in basic research.
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