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Editorial
Gene therapy has demonstrated significant potential as a 

cancer therapy in the last few years. The greatest successes have 
been reached by genetic modification of autologous patient T 
cells with chimeric antigen receptors (CARs), which are novel 
and synthetic receptors composed of the antigen-binding 
domain from a B cell receptor fused to the signaling elements 
associated with a T cell receptor [1].

CAR-T cells are targeted towards malignant cells expressed 
defined associated antigens. CAR-T cells can overcome the major 
challenges of immunotherapy such as tolerance to self-antigens 
and cancer immune system evasion mechanism [2].

Structure of CAR
CAR is composed of an extracellular antigen-bindingdomain 

derived from an antibody (mostly a single-chain fragment of 
variable region antibody), a hinge region, transmembrane 
domains and an intracellular signaling chain, frequently the 
TCR-derived CD3 chain [3].

Most investigators use the hinge and transmembrane 
domains of CD8 or CD28 [4]. The antibody domain mediates 
target recognition independently of major histocompatibility 
complex and enables the targeting of a plethora of antigens, 
including proteins, carbohydrates and gangliosides, as long as 
the antigen is present on the surface of the target cell [5].

Retroviruses are used to introduce the CAR constructs into 
T cells. One potential disadvantage of retrovirus as vehicle is the 
potential for silencing of CAR expression based on silencing of 
the long terminal repeats. This could be an advantage of CAR-
based therapies if they are used as a bridge to another definitive 
treatment such as allogeneic bone marrow transplant [4]. 
Lentiviral vectors are potentially safer than retrovirus based 
on integration preferences examined in hematopoietic stem 
cells, though it is not clear that this applies to primary human 
T cells. Use of specific promoters in combination with Lentiviral 
transduction has enabled sustained surface expression of 
CARs on transduced T cells; this likely extends the survival of 
functional CAR T cells in vivo [4].

The Generations of CARs 
CARs are described as first-, second- or third generation [6]. 

The “generations” of CARs typically refer to the intracellular 
signaling domains they contain. First-generation CARs include 
only CD3 as an intracellular signaling domain. They lack 
costimulatory properties. Second-generation CARs include 
a single costimulatory domain derived from either CD28 or 
4-1BB to fully activate T cells. Third-generation CARs include 
two costimulatory domains, such as CD28, 4-1BB, and other 
costimulatory molecules in tandem [4]. Preclinical experiments 
suggest that third generation CARs may be more potent than 
second generation CARs [7].

Clinical studies of first-generation CAR T cells showed 
that lympho depleting chemotherapy may enhance CAR T-cell 
responses by eradicating regulatory T cells, eliminating other 
immune cells that may compete for homeostatic cytokines, and 
enhancing antigen presenting cell activation [8].

Clinical Studies of CAR T cells
CAR T cells and hematologic malignancies

The most investigated target for CARs is CD19 because of its 
common expression in most B cell leukemias and lymphomas, 
and its absence in all normal tissues other than B cell lineage 
[9]. CD19-targeted CAR constructs have demonstrated 
consistently high antitumor efficacy in children and adults with 
relapsed B-cell acute lymphoblastic leukemia (B-ALL), chronic 
lymphocytic leukemia (CLL), and B-cell non-Hodgkin lymphoma 
(B-NHL) in the non-transplantation setting [8].

ALL: Dramatic results have been reported with use of CAR 
T cells in ALL [10]. Anti-CD19 CAR T cells can lead to complete 
response rates of up to 90 % in heavily pretreated ALL patients. 
These high response rates are tempered by the requirement 
for individual product manufacturing for each patient, the high 
costs of gene transfer technology and emerging problems such as 
limited persistence in some patients and antigen-loss relapses. 
Preliminary results indicate that molecules other than CD19 can 
also be effectively targeted [11].
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a) NHL: Promising results have been seen in NHL patients 
[10]. 

b) CLL: Limited clinical efficacy of CAR T cells was observed 
in CLL patients compared to B-ALL. Potential explanations 
is limited persistence of CAR T cells in CLL patients, the 
immuno-inhibitory tumor microenvironment of CLL, the 
lymph-node based disease in CLL compared to the mostly 
bone marrow-based nature of B-ALL and the lower tumor 
burden at treatment in B-ALL patients. Potential methods 
to overcome these possible barriers include incorporation 
of other signaling domains or other immune effectors into 
the CAR T cells. Limitations of persistence may be overcome 
by incorporating co-stimulatory domains such as CD28, 
CD137 or CD134 into third-generation CARs or by directing 
secretion of pro-inflammatory cytokines such as IL12 in a 
second-generation CAR [1].

c) Acute myeloid leukemia: A CD33-specific CAR 
has been developed [12] and is effective in preclinical 
experiments. However, this approach needs further 
evaluation asCD33 is a pan-myeloid marker and so, CD33-
CAR-redirected T cells may lead to profound and prolonged 
myeloid depletion. The isoform variant 6 of CD44 (CD44v6) 
represents another possible target for CAR-T cells in myeloid 
leukemias. Preliminary results show that CD44v6-CAR-
redirected T cells had antitumor effects against CD44v6-
positive malignancies [13].

d) Multiple myeloma (MM): A recent case report 
described the use of CD19 CAR T cells after a second ASCT in 
a MM patient. The patient sustained a CR without evidence 
of recurrence at 12 months [10]. Allogeneic CD19-directed 
CAR T cells (derived from donor lymphocytes) have induced 
remissions without induction of GVHD in post allo-HCT 
relapsed patients. Thus, the allo-HCT or ASCT platform could 
be adapted to subsequent CAR T technology [14].

Given the extremely low expression of CD19 on the patient’s 
neoplastic plasma cells [10], several promising antigenic targets 
have been identified for the development of anti-MM CARs such 
as B–cell maturation antigen, CD138, kappa light chains and 
CS-1 [14].

CAR-T cell-and minimal residual disease
CAR-T cell-based therapy may be better suited to minimal 

residual disease or as an adjuvant for patients at high risk of 
relapse, who responded to salvage treatment or after transplant 
[7].

CAR T cells and transplantation
CAR T cells targeting CD19 have served as a bridge to 

transplantation or have been used as salvage for patients who 
relapse or progress after transplantation. Ongoing studies are 
examining the role of combining these therapies with stem cell 

transplantation to further improve outcomes in lymphoma and 
MM patients [10].

CAR T-cell dose
The cell dose for patients with morphologic disease is lower 

than those with MRD (1X106vs3 X 106 19-28zCART cells per 
kg). A higher CAR T-cell dose is well tolerated in patients with 
MRD [8].

Toxicities of CD19-targeted CAR T cells
All trials of CD19-targeted CAR T cells have reported similar 

treatment related toxicities, particularly cytokine release 
syndrome (CRS), neurological toxicities, and B-cell aplasia, 
although severity of observed toxicities differs. CRS reflects 
a systemic inflammatory response syndrome hours to days 
following CAR T-cell infusion, characterized by elevations of 
proinflammatory cytokines and T-cell activation and expansion 
[8]. Clinical features include fever, myalgia, malaise, and, in 
more severe cases, a capillary leak syndrome associated with 
hypoxia, hypotension, and occasionally renal dysfunction and 
coagulopathy. Severe CRS may be treated with the IL-6 receptor 
inhibitor tocilizumab or with lymphotoxic corticosteroids [8]. 

CAR T cells and solid tumors
Unfortunately, the clinical results in solid tumors have been 

much less encouraging. Specific target antigens on solid tumors 
are more difficult to identify. Roughly 30 solid tumor antigens 
are being evaluated for CAR T-cell therapy. The two most positive 
trials reported were GD2 CARs to target neuroblastoma and 
HER2 CARs for sarcoma [15].

The solid tumor landscape presents unique barriers that 
are absent in hematological malignancies. Even after successful 
trafficking and infiltration, T cells must surmount challenges 
conferred by: (i) an environment characterized by oxidative 
stress, nutritional depletion, acidic pH and hypoxia; (ii) the 
presence of suppressive soluble factors and cytokines;(iii) 
suppressive immune cells (regulatory T cells), myeloid derived 
suppressor cells, tumor-associated macrophages or neutrophils; 
and (iv) T-cell-intrinsic negative regulatory mechanisms (e.g., 
upregulation of cytoplasmic and surface inhibitory receptors) 
and over expression of inhibitory molecules [15].

TRUCKs (T cells redirected for universal cytokine 
mediated killing)

TRUCKs are CAR-redirected T cells used as vehicles 
to constitutively produce or induce release, mostly a pro-
inflammatory cytokine in the targeted tissue. CAR T cells, when 
activated by their CAR, deposit IL-12 in the targeted tumor 
lesion, which in turn attracts an innate immune cell response 
toward cancer cells that are invisible to CAR T cells [5]. TRUCKs 
exhibited remarkable efficacy against solid tumors with diverse 
cancer cell phenotypes, suggesting their evaluation in clinical 
trials [5]. 
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