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Introduction
Retinoic acid (RA) is one of the most active derivatives of vi-

tamin A (retinol), belonging to the huge family of retinoids. RA is 
the first open morphogen in vertebrates and plays a huge role in 
embryonic development. In adults RA regulates multiple biolog-
ical processes including tissue remodeling and regulation of the 
immune response. The intracellular functions of the RA are also 
associated primarily with stimulation of differentiation or apop-
tosis and with negative regulation of proliferation. Due to its 
pro-differentiation activity RA plays predominantly anti-onco-
genic or tumor-suppressive role in the context of carcinogenesis. 
At present an active attempts are being made to use RA and its 
derivatives in the therapy of malignant neoplasms [1-5]. Howev-
er, the use of PA is strongly restricted by the rapid acquisition of 
cell resistance, as well as by a large number of side effects [5,6]. 

In addition, in some types of tissues (primarily in skin and 
in neuronal cells), RA plays an inverse function, stimulating cell 
survival and proliferation [7-11]. The reasons for such different 
functional significance of the RA, as well as the mechanisms of 
cell resistance to the RA, are not fully understood. The growing 
pool of evidences points to the key role in these processes of the 
group of proteins that bind PA in cytoplasm and largely deter-
mine its further fate as well as its effect on cells. At the same 
time, the data on the significance of each of these proteins are  

 
very contradictory. This review is an attempt to consider current  
knowledge on the multiple roles that RA-binding proteins play in 
mediating of the biological activities of retinoic acid, as well as to 
assess their significance for cancer progression.

RA Nuclear Receptors
The “canonical” activity of the RA is accomplished by regu-

lating the activity of several hundred genes. This activity is me-
diated by nuclear receptors of RA, ligand-inducible transcription 
factors belonging to the super family of nuclear hormone recep-
tors that regulate the expression of genes containing retinoid-re-
sponsive elements (RARE) in their promoter regions. The main 
receptors of the RA are RAR (RAR α, β and γ) and RXR proteins, 
which preferentially bind different isoforms of RA and are capa-
ble of forming heterodimers. Besides, RA binds the third nuclear 
receptor, PPARβ / δ, which functions, like RAR, in a heterodimer 
with RXR. Importantly, the repertoire of genes under RA control 
includes different groups of -RAR- and PPARβ / δ-dependent 
ones. 

RA binding proteins. 

Intracellular transport of hydrophobic RA and its delivery 
to the different type of receptors is conducted by the members 
of lipid-binding proteins (iLBP) family: CRABP-I and CRABP-II 
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(cellular retinoic acid binding proteins-I and -II, delivering RA 
towards RARs) [12] and FABP5 (fatty acid binding protein 5, 
delivering RA towards PPARβ/δ) [13]. It should be noted that 
the affinity of CRABP-RAR complex to RA is higher than that of 
FABP5-PPARβ / δ complex [14]. That’s the reason why in the 
majority of cells the action of the RA via RARs dominates, while 
activation of the FABP5 - PPARβ / δ pathway occurs only in cells 
with a high FABP5 / CRABP ratio [9,15,16] RARs are thought 
to activate transcription of genes that induce differentiation, 
apoptosis, or cell cycle arrest [17-21], while PPARβ/δ promotes 
expression of genes responsible for survival, proliferation, and 
angiogenesis [9,22-24]. Consequently, RA inhibits growth of tu-
mors that express CRABP (more precisely, CRABP2, see below) 
but strengthens the oncogenic potential of carcinomas with high 
level of FABP5 expression [16,25].

In fact, there are 2 high-homologous (74% homology) 
CRABP proteins: CRABP-II and CRABP-I, both bind RA to a sim-
ilar extent (CRABP-I slightly better than CRABP-II) [12], but the 
significance of this binding seems fundamentally distinct. Bind-
ing of RA with CRABP-II protein causes conformational changes 
leading to the activation of the nuclear localization signal (NLS) 
and subsequent translocation of protein into the nucleus where 
CRABP-II interacts directly with RAR proteins. This interaction 
significantly facilitates the formation of the active complex of 
RA-RAR and enhances the transcriptional activity of RAR re-
ceptors. In accordance with this activity, the CRABP-II protein 
is commonly considered as tumor suppressor, and that is con-
firmed by a number of data [9,26-28]. At the same time there is 
also some evidence of tumor-promoting role of CRABP-II protein 
[29-31]. It is not excluded, however, that this role may not be 
related to its RA binding activity (see below).

The mechanisms of CRABP- I activity are much less under-
stood. Despite that CRABP-I, like CRABP-II could be found in the 
nucleus [32], this protein does not interact directly with RARs. 
Accordingly, CRABP-I -mediated transfer of RA to its receptors 
requires first the dissociation of the RA-CRABP-I complex and 
the subsequent association of RA with RAR [12,33]. Therefore, 
even if CRABP-I is able to activate the RAR-dependent transcrip-
tion, it does this less efficiently than CRABP-II. One of the possible 
functions of CRABP-I can be protection of cells from the excess of 
retinoic acid. In support of this hypothesis several studies show 
a reduction in the effects of RA in the presence of CRABP-I. It is 
assumed that this protein may sequester RA in the cytoplasm or 
even contribute to its catabolism in the mitochondria [34,35]. 
There is also evidence that retention of PK by CRABP-I interfere 
with its interaction with CRABP-II, thereby suppressing CRABP-
II-RAR-dependent signaling [36]. Finally, there is evidence that 
CRABP-I has no effect on RA effects at all, including on the tran-
scriptional activity of RAR [12,37] and on the expression of ret-
inoid responsive genes, although causes a decrease in intracel-
lular RA concentration [38]. In addition, our own data indicate 
that CRABP-I can enhance tumorigenicity of transformed cells, 

regardless to its RA-binding ability [39]. In any case, It seems 
like most if not all the known functions of CRABP-I are attributed 
to its activity in the cytoplasm. 

In this respect, recently published data on “non-canonical” 
activity of RA, in the mediating of which CRABP-I can partic-
ipate, seems very interesting. Thus, it was shown, that RA can 
stimulate non genomic activation of the key signaling path-
ways such as MAPK-- и Akt-dependent cascades. Particularly, 
all-trans retinoic acid (atRA) promoted activation of the PI3k/
Akt pathway via transcription-independent mechanisms by 
translocation of RARα to the plasma membrane and association 
of RARα with Akt [40]. The same group also recently reported 
the transcription-independent mechanisms of Erk1/2 activa-
tion by atRA [41]. Importantly, CRABP-I can contribute to this 
non-canonical activity of the RA, what has been demonstrated 
in two studies. The authors have found that CRABP-I mediates 
the non-canonical, RAR- and membrane signal-independent ac-
tivation of ERK1/2 by atRA in various cellular backgrounds [42]. 
Noteworthy, in this case CRABP-I-dependent activation of Erk1 
/2 resulted in the stimulation of apoptosis and correspondingly, 
CRABP-I demonstrated anti-oncogenic activity [43]. In general, 
the functional significance of CRABP-I in carcinogenesis remains 
poorly understood, and the data on this issue are highly contro-
versial - some testify to its tumor suppressing activity [44-48] 
while others indicate its association with cancer or with poor 
prognosis for cancer patients [36,49]. 

The situation is further complicated by the fact that both 
CRABP homologs apparently have activities and target proteins 
independent from RA and its receptors. In particular, for CRABP-
II, the direct interaction with the members of Hu group of pro-
teins has been showed recently [50]. These proteins are involved 
in post-transcriptional regulation of gene expression and mRNA 
stability. Interestingly, the protein-protein interaction of CRABP-
II with HuR markedly increases the affinity of HuR for certain 
target transcripts. CRABP-II thus enhances the stability and 
increases the expression levels of these transcripts including 
mRNAs for the certain proapoptotic genes, such as Apaf-1 and 
Casp7 as well as for HuR itself. Therefore CRABP-II can realize 
anticarcinogenic activity using both mechanisms – RAR-depen-
dent stimulation of transcription and up regulation of HuR [51]. 
However, in neuroblastoma cells CRABP-II apparently plays an 
opposite role, promoting cell malignancy. Notably, this activity is 
also associated with Hu proteins. In this case, CRABP-II through 
not well understood mechanism stimulates the production of 
HuD and HuB proteins, causing an increase in MycN expression, 
which is one of the main criteria for poor prognosis in neuro-
blastomas [52]. 

In glioblastomas (GBM), the accumulation of CRABP-II in the 
cytoplasm has been also determined as a factor of poor progno-
sis. The authors of this study showed, that CRABP-II accumulates 
in the cytoplasm of GBM cells, attenuating the transcriptional ac-
tivity of RARs and thereby promoting tumor cells survival [31]. 
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These data are in good agreement with the results of CRABP pro-
teins study in breast cancer cells, where it has been shown that 
nuclear but not cytoplasmic, CRABP-II was positively associated 
with patient survival, while cytoplasmic CRABP-I was associat-
ed with a poor prognosis. Moreover, the authors of this research 
propose that CRABP-I accumulation in the cytoplasm prevents 
RAR activation in the nucleus. Noteworthy, this is one of the 
very few articles where all three RC binding proteins CRABP-I, 
CRABP-II as well as FABP5) were studied simultaneously in the 
same cells. The authors found that CRABP-I negatively regu-
lates CRABP-II expression and also suppress CRABP-II activity 
via CRABP-I-dependent sequestration of RA in cytoplasm and 
repression of RA-mediated nuclear translocation of CRABP-II 
[36]. Given that expression of genes encoding described above 
RA-binding proteins, in turn, are themselves controlled by RAR 
transcriptional factors, the possibility of their mutual regulation 
seems very similar to the truth.

Conclusion
Summing up, it should be noted that many aspects of the 

functional activity of the RA- binding proteins remain unex-
plained. For example, the role of CRABP-I in the nucleus remains 
completely unclear. The question of similar or (more likely) the 
opposite role of CRABP-I and CRABP-II homologs with respect 
to carrying out RC-dependent signaling is also left open. The 
same concerns their role in cancer pathogenesis in general. It is 
likely that these proteins could be at least partially responsible 
for the different effects of RA in different types of cancer, and 
also could contribute to the formation of the resistance to RA 
treatment. The only thing that seems obvious is the great impor-
tance of these proteins in carcinogenesis and the need for their 
further research. This should include the simultaneous study of 
all RA-binding proteins in the same cells, an analysis of their ac-
tivity both in the cytoplasm and in the nucleus, and estimation 
of their effects on the canonical and non-transcriptional activity 
of RA.
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