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Abstract

Various mathematical models such as Gompertzian, logistic, exponential and other immunogenic models were integrated for calculation of 
various cancer parameters. Pharmacokinetic and pharmacodynamic models likened to other models especially, absorption and elimination are 
considered similar to proliferation and elimination phase of cancerous cells respectively. 

Doubling time (TD) is equal to   2ln
kl

kp
−  whereas reduction time (RT) is  

2ln
kl
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− and mean proliferation time (MPT) of cancer cells is 
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0.693

TD kp kl

kx
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. Some revised formulas fit cancer chemotherapy, immunotherapy and chemotherapy/immunotherapy. Some parameters were also calculated to 
validate the established and newly derived formulas for relevance, construct validity, prediction and reliability. Conclusively, none of the formulas 
is reliable. However, the formula that considers body surface area may be more relevant to monogastric animals especially dogs and humans. 
BSA with constant (k), height (0.528) and weight (0.528) functions better for human and dogs. Many other formulas highlighted are also useful. 
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Introduction
The first central nervous system (CNS) Anticancer Drug 

Discovery and Development Conference (ADDDC) was organized 
and convened out of frustration by dearth of effective anticancer 
drugs [1]. About 169.3 million years were lost due to cancers 
in 2008, with colorectal, lung, breast and prostate cancers, 
respectively [2] having 5-year survival rate as highest for breast 
cancer, followed by colorectal and prostate cancer, respectively 
[3] with African countries recording 541,800 deaths [4]. In 2007, 
over 12-million people were diagnosed with cancer. At least 
one-third of these individuals are not expected to survive the 
disease, making cancer the second most prevalent cause of death 
worldwide. Systemic chemotherapy forms the mainstay of cancer 
treatment and antimitotics are commonly used to treat a wide 
variety of cancers [5]. 

The strategy of chemically targeting cancerous cells at their 
most vulnerable state during mitosis has instigated numerous 
studies into the cell death [6], indicating that, there is a high 
potential for optimization of chemotherapy schedules, although 
the currently available models are not yet appropriate for 
transferring the optional therapies into medical practice due to 
patients, cancer and therapy specific components [7]. Therefore,  

 
the development of optional vaccine-chemotherapy protocols for 
removing tumor cells would be another appropriate strategy in 
cancer treatment [8]. Since polymorphism can be maintained in 
a finite population by adaptively turning selection, there is need 
for a model of resistance in a stochastically evolving cancer cell 
population [9], with intent to reducing adaptive therapy. However, 
the growth rate of healthy and tumor cells approach the carrying 
capacities K1 and K2 respectively [10]. 

The effect of immune system is to kill the mutated and cancer 
cells at proportional rates d1 and d2, through apoptosis [11]. The 
coefficient c represents the portion of the healthy cells, whose 
genome is disordered by the external esterase. These cells start 
the neoplastic transformation and are added to the tumor cells 
[12]. The tumor competes with healthy cells for resources such 
as blood, nutrients and space [13]. However, an optional control 
problem for combination of cancer chemotherapy with immune-
therapy in form of a boost to the immune system is considered as 
a multi-input optional control problem [14]. 

Materials and Methods
Various literatures were searched for mathematical models 

used in calculation of doubling time of tumor cells, proliferation 
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and loss, tumor volume, immuno-competent cell density, 
colonization rate and other tumor parameters. Gompertzian, 
logistic, exponential and other methods were re-viewed for 
optimization of cancer chemotherapy and immunotherapy [5-
48]. All the formulas derived from various sources are given in 
equations 1-25. New formulas for calculation of parameters of 
tumor growth and cytotoxic drugs, cancer immunotherapeutic 

and cytotoxic/immunotherapeutic were independently and 
combinedly derived. The reported parameters are given in Table 
1. Whereas analysis of doubling times in cancers of selected 
origin are given in Table 2. However, various parameters are 
recalculated for some cancer cell types and their cytotoxic drugs 
are recalculated for construct validity, reliability and prediction of 
the new formulas.

Table 1: Cancer variables and parameters used in numerical computations.

Variable Interpretation Numerical value Reference

X Tumor Volume   Stepanova [46]

Xo Initial Value for X 600

Stepanova [46]y Immuno-Competent cell density  

yo Initial Value for y 0.1

α Rate of influx 0.1181 Kusnetsov et al. [43]

β Inverse threshold for tumor sup-
pression   Kusnetsov et al. [43]

γ Interaction rate 1  

δ Death rate 0.37451 Kusnetsov et al. [43]

Mc Tumor growth parameter 0.5599

Kusnetsov et al. [43]
Ml Tumor stimulated proliferation 

rate 0.00484

Xa Fixed carrying capacity 780

K Chemotherapeutic killing param-
eter 1

A Proliferation kinetics 0.192

Hahnfedt et al. [42]

B Angiogenic stimulation 5.85

D Angiogenic inhibition 0.00873

M Colonization rate 0.001

D Diffusion coefficient of tumor 22.41

C Speed of drug delivery to tumor 0.3m/s

Namazi et al. [25]
θο (n, l) Maximum Gaussian pulse 1.2

l* Maximum Gaussian pulse moment 0.003

τ Standard deviation of Gaussian 
pulse 0.0015

α Fractal dimension of vasculariza-
tion 2/3

Hahnfeldt et al. [42]
Ko Initial carrying of capacity 1

Table 2:  Categorical analysis of doubling time estimate in cancers of selected origin.

Cancer
Cell lines

Patient Average Dou-
bling Time Ref TC

IDe∞ Average Doubling 
Time (Day) TC

Colon tumour SW480 5.4 17.9 391 1298.1

Prostate cancer DU145 1.2 4.0 219 727.1

Breast cancer HCC1954 1.3 4.3 152 504.6

Skin MMS.1 0.8 2.7 147 488.0

Lung SNU-371 4.1 13.6 114 378.5

Chronic lymphoblastic
Leukemia (CLL) MEC1 1.6 5.3 781 2592.9

Acute lymphoblastic 
Leukemia (ALL) Jarkat 2.0 13.8 5.7 18.9
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Chronic Myeloid 
Leukemia (CML) MEG-01 1.8 6.0 8.0 26.6

Acute Myeloid 
Leukemia KG-1 1.3 4.3 2.5 8.3

Reference: Chan et al. [6]
Key: TC = Tumor growth delay

Results and Discussion
Cancer cells grow over time. But the rate of growth decreases 

as the cancer mass increases. Therefore, cell tumor size and tumor 
volume are proportional 

dv
dt

  = The rate of change in tumor volume per unit time

( )  *dv kp kl V
dt

= −

kp = the rate constant for cell production

kl = The rate constant for cell loss 

V = Vo exp [(kp – kl)/ (t2 – t1)]

Vo = represents the volume of the tumor at time zero 

V = represent the volume of the tumor after the time interval 
has elapsed (t2 – t1) 

2ln  TD
kp kl

=
−

Td = TD = Doubling time of the tumor

Absorption half-life (T½α) = 2ln
α

2ln  1
2

T
∝=

∝

By the time a tumor becomes chemically detectable, it has 
achieved a mass of approximately lg or 109 tumor cells.

1g of tumor mass = 109 cells = 30 doublings and its growth are 
no longer exponential. The additional 10 doublings is required to 
produce 1012 cells or 1kg lesion – a tumor burden at which most 
patients succumb-occur much more slowly than do the previous 
30 doubling and represents a fraction of the tumor’s growth. 
Tumor growth delay for tumor in vitro and in vivo cell lines are 
presented in Table 2.

Relationships between Tumor Cell Survival and Drug 
Dose is Exponential

The number of cells surviving at a given dose of a drug (dN) 
is proportional to both the drug dose and the number of cells at 
risk for exposure to the drug (NdD), where N = number of cells in 
tumor, D = drug dose, dN = - KndD, where proportionality constant 
– K is introduced with a negative sign. Because the number of cells 
is expected to decrease with increasing drug dose, the formula is 
rearranged as follows:

N = No exp – K (D – Do), where the subscript (o) indicates the 
initial dose and cell number. 

Imaging at the beginning of treatment, a tumor contains 10 
cells, if each course of treatment results in death of 99.9% of these 
cells, if no log of cell growth occurs between courses of treatment, 
five courses of treatment are required to dominate the last cell. 
The exponential relationship between drug dose and tumor 
survival dictates that a constant proportion, not number of tumor 
cells is killed with each treatment cycle. In this example, each 
cycle of drug administration results in 99.9% (3log) of cell kill, 
and log of cell growth occurs between cycles. 

Assume a tumor contains 1011 cells and the proportionality 
constant (-K) = -5 for cyclophosphamide (an alkylating agent). If 
1.5 of cyclophosphamide is delivered, the tumor will be left with 
5.5 x 107 Cells.

N = No exp – K (D – Do); No = 1011 when Do = O

∴N = 1011 exp – 5 (1.5 – O) = 5.5 x 107 cells. If the oncologist 
chooses to administer 0.75g of cyclophosphamide instead of 1.5g, 
N = 1011 exp – 5 (0.75 – O) = 2.4 x 109 cells.

 The result is that a 50% decrease in dose has translated into 
a 98% increase in cell survival. Therefore, let liken tumor growth 
with compartment model of drug disposition in pharmacokinetic. 
Alkylating agents with antitumor and myelo-suppressive effects 
are directly proportionate to dose and to the total area under 
the concentration versus time curve (AUC) rather than to 
instantaneous plasma drug concentration. 

                          max min
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1
2
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T
MAT

∝
=

1 *0.693
2

T MAT∝=

MAT = Mean absorption time

Therefore, substitute for T½ α in equation 1 

                                     

* *0.693
p l

MATTD
K K

∝
=

−

 whereas TD is tumor doubling

                                

                                       

*
*0.693

P lTD K KMAT −
=

∝

pK∝= =Production constant

1 1
2 2

T T P∝= =Production half life 

KLβ = = Loss constant 

1 1
2 2

T T Iβ = = Loss half life

MAT = MPT = Mean production time 

Therefore, the derived formulas are presented as follows:
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5: ( ) ( )2 2 2 2   1  /  –    –   Y a Y y k d Y cx b xy g Y= − + +

x = healthy cells; y = cancer cells 

Their values are non-negative i.e. x ≥ 0; y ≥ 0

The coefficient a, growth rate of healthy cells, a1 = growth rate 
of cancer cells 

K1 = carrying capacity of healthy cells, K2 = carrying capacity 
of tumor cells, immune system should kill mutated cells at (d1) 
and cancers cells at (d2)

The tumor competes with healthy cells for resources; blood, 
nutrients and space. The competition coefficients are b1, b2, and g.

6: The effect of anticancer chemotherapy: 

( )/   dm µm Vm tdt = +

1.2m/0.8+m for chemotherapy fraction cells kill.

Optional vaccine-chemotherapy protocols for removing tumor 
cells maybe an appropriate strategy in cancer chemotherapy. A 
proper treatment method would reduce the population of cancer 
cells and changes the dynamics of cancer [8].

7: N = ns + nr (N = Inner tumor composition; ns = drug sensitive 
cells; nr = drug resistant cells)

The capacity to involve and adapt makes successful treatment 
of cancer difficult. Therefore, high-resolution monitoring of the 
target population is important [9].

8: ( )2 1       Y µ x x d y x ky yvβ α δ= − − + +

An optional control problem for combination of cancer 
chemotherapy with immunotherapy in form of a boost to immune 
system is considered as a multi-input optional control problem. 
Simplified mathematical model may be useful to give some 
guidance [14]. The exponent 0.67 is needed since anticancer has 
to be released through the surface of the tumor [15] but 0.528 
correlates very well with both human and dogs [16]. However, 
various body surface area formulas have various exponents which 
can grossly affect the results [17]. 

9: I (Inhibitor) = 2
3/dp q

Resistance factor should be responsible for the effect of drug 
resistance of tumor cells on the dynamical growth for the tumor. 
Optional control problems have common point wise both different 
integral constraints on the control. Bang-bang control is optional 
if the resistance is sufficiently strong [18].

10: ( ) ( )  –   Mt M L V t= +

The drug level function m=m(t) obeys linear differential 
equation with a positive drug decay rate where v(t) denotes the 
drug dose administered per unit time. The fate of anticancer 
drugs from introduction into the body to intracellular targets can 
be represented by pharmacokinetic (pk) compartmental ordinary 
differential equations (ODEs) for their concentration. This fate 
is theoretically representable by partial differential equations 
(PDFs) with boundary conditions instead of exchange rule. But in 
cell medium, pharmaceutical differential equation must be used 
to relate local drug concentration with molecular effects on their 
targets, delte Billy et al. and , also [39].
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The most common models of tumor growth are the exponential 
model DN N

DT
= and the logistics ( )/ ,  1–( /DN

dt N N Kλ=
, Where K is the maximum tumor size, or carrying capacity of 
the environment and the Gomperz ( )( /  /DN K

dt NNlnλ= where 
again K is the carrying capacity. Contrary to the exponential and 
logistic models the Gompertz model was initially developed in the 
context of insurance [19] and was just used in the nineties to fit 
exponential data of tumor growth [20]. Murray [21] considered 
two – population Gompertz growth model with a loss term to 
model the effect of cytotoxic drug.

11: ( ) ( )2
3/   –  /   –  dk

dNdt bN µ K g t k= +

Where b is the rate of tumor-induced vascular formation, K 
+ dN2/3 represents the rate of spontaneous and tumor-induced 
vascular loss, g (t) ≥, 0 represents the antiangiogenic drug 
concentration 

12: ( )2/3 3/4/ –      dk
dt bk dk µ yu nv K= − + −

µ = dose of antiangiogenic drug; V = dose of cytotoxic drugs; 
Q1Y1, n = their effects in tumor cells and on vasculature.

.( )  ( ) ww Dw w w q w
t

wδ∂
= ∆ + ∆ + ∝ −

∂

Where m denotes the density of endothelial cells; Dm= 
diffusion rate; αm = proliferation rate; Xm = chemotaxis rate; δm 
= death rate; w = the concentration of chemoattractant substance; 
Dw = diffusion rate; δw = production rate that depends on the 
density of quiescent tumor cells q; δw = degradation rate. 

A mathematic model for time used to theoretically investigate 
anticancer therapy such as surgery and chemical treatments has 
been established. Theoretically optional schedules are derived 
which show superiority of a metronomic administration sequence 
on a classical maximum tolerated dose scheme for the total 
metastatic burden in the organ, [38].

Tumors have two phenotypical traits: volume denoted by V, 
also to as size expressed in mm3 and caring capacity denoted by 
K, expressed also in mm3. Hence, physiological domain where 
metastases live is the square max , max][ ]*[o oV V V VΩ = −  whose 
boundary is devoted by ∂Ω with external normal vector V(δ).

14: ( ) ( )2 3/ –     ,     /bV dV k G V K aVln K V= = s

a = parameter controlling the cancer cells proliferation 
kinetics

b = parameter for production and effect of angiogenesis 
stimulators

d = Parameter for production and effect of angiogenesis 
inhibitors

The main assumption underlying the model is that, clearance 
rate of inhibitors (e.g. endostatin, angiostatin, thrombospondin 
– 1) is much smaller than clearance stimulators (e.g. vascular 
endothelial growth factor based on fibroblast growth factor. The 

concentration of inhibitors should be proportional to the surface 
of the tumor giving rise to 0.67 power in the inhibition term. The 
number of metastases emitted by a tumor with volume V for unit 
of time is given by

15: Β (V) = mVα where α = 0.67 or fully penetrating. The tumor 
(α = 1) and 0.75 or even having any fractal dimension between 2 
and 3 or 4. 

16: 1( ) exp( ( )N
i i titA t Ur t t lD − ≥= − −  where D is the 

administered dose ti’s are the administration times and  is a 
Heaviside function having value 1 if and only it jt t≥ .

A total amount (Amax) has to be given at a constant rate 
during administration time (t), followed by a rest period from (t) 
to an arbitrary end time (t).

17: max1( ; ) tsrAA t t
T

= Ledzewics et al. [14]

Condition of Maximum Tolerated Dose (MTD) Ad-
ministration Scheme

Modeling and prediction of the effect of chemotherapy was 
developed using fractional diffusion equation. The methodology 
is useful for analysis of the effect of special drug and cancer [22]. 
Also, a mathematical model for the scheduling of angiogenic 
inhibitor in combination with a killing agent was considered as 
an optional control problem, [14]. The initial condition well posed 
for the optional control problem is not difficult to determine, 
because the first order necessary conditions for optimality of the 
controls U and V given by pontryagin maximum principle states 
that there exists a constant (λo≥O) and an absolutely continued 
co-vector λ satisfying the equation transversally. Cancer cells can 
be eradicated in a very short time with a small amount of drug 
using an optional administration therapy [23]. The best way of 
reducing the tumor burden after a fixed period of treatment is 
to keep the tumor size to minimum initially and then fire high 
intensity treatment towards the end of the treatment period 
[24]. But stochastic model provides a description of the optimal 
therapeutic regimen [25] Endothelial birth (b) and death(d) rate 
depend mainly on the type of tumor and the patient tumor cannot 
increase over the maximum volume: C∞ = e∞ = (b/d)³/² nd then 
does not consider evolution to metastasis [26].

18: However, tumor width (mg) = 
2*

2
a b

a & b, the tumor length and weight in mg must be considered 
in the calculation of cancer parameters.

T - C; T is the median time (days) required for tumors to reach 
a predetermined size (e.g. 1000mg), and C is the median time 
(days) for the control tumors to reach the same size.

19: Tumor Cell kill = Log10 cell kill total (gross) = *
3.32

T C Td−

T - C is the tumor growth delay; Td = the tumor volume 
doubling time (days) estimated from the best fit straight line from 
linear growth plot of the control tumors in exponential growth 
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(100 – 800 range). The conversion of the T-C values to log10 cell kill 
is possible, because the Td of tumors re-growing post treatment 
(Rx) approximates the Td values of the tumors in untreated control 
mice. The calculations for net log10 tumor cell kill is provided by 
subtraction of the duration of the treatment period from the T-C 
value and then divide by 3.32 x Td

Many solid tumors have shown empirically [27] to follow the 
Gompertz growth law [28].

20: Therefore, exp (1[ )]to
o

kV V e α−−
∝

=

	 Where V = Volumetric size of the tumor of time, t and V0, 
K0, and α are constants.

21: But growth equation with growth constant

 
1

( ) VK t
dt

dv−

=  decreases exponentially with time [29].

	
dv KV
dt

=

         dk K
dt

= − ∝

With V(o) = Vo, K(o) = Ko, show that an equivalent result is 
obtained by the assumption [28] 

	 logdv vV
dt v

=∝

But since log log v
v

ω=

	
dv V
dt

ω=∝

With o
okeV V ∧=
∝

22: Since all mitotic phases express ki – 67 antigens, 

(    ) *1 
  

00Population of mitotic cellsMitotic Index
Total cell population

MI =

	
	

But tumors with less than 250 MIB-1 positive cells are 
excluded [30].  

23: Cell cycle time and potential doubling time are calculated 
for meningiomas and neurinomas as follows:

Cell cycle time (Tc) = , whereas tm is 
mitosis time [31] 

24: However, tumor potential can also be calculated as follows:

( ) 2ln *
ln(1

   
 )c cCell cycle time T

growth fraction
T=

+  

whereas Tpot is the tumor potential,[40]

Also, ( ) 2ln *
ln(1

1 0
)

0

po mt tMIT =
+

 whereas growth fraction 

		  = 11*
100
SMIB −  and mitosis time (tm) 

		  =	 1 – 2 hours [4]

25: Tumor doubling time (Td) can also be calculated as 
follows:

2log

log( )t

o

tTd v
v

=  where V0 = initial tumor volume; Vt = tumor 

volume after t days [47]

26: Cell loss factor (CLF) is equal to:
1 pot

d

TCLF
T
−

=  as described by Steel et al. [32]. The equations 

(22 – 26) are very useful for calculation of cancer parameters 
for meningiomas and neurinomas [33].

However, tumor inhibition rate % = (Mean tumor weight 
of control group – Mean tumor weight of treated group) over 
mean tumor weight of control group x 100 can be applied for 
hepatocellular carcinoma H22 cell line in mice [34]. The time it 
takes for a tumor mass to double is known as the doubling time 
which varies according to the size of tumor, but for most solid 
tumors, it is about 2-3 months (60-90 days). Initially the growth 
is exponential and then slows as the tumor increases in size 
and age called Gompertzian growth. Generally, chemotherapy is 
most successful when the number of tumor cells is low and the 
growth fraction is high, which is the situation in the very early 
stages of cancer. The larger the tumor mass, the more likely it has 
metastasized to other sites [35]. Cancer chemotherapy is goal-
specific. For the patient to be cancer-free, the treatment must be 
total. But if the treatment is palliative, the quality of life may be 
improved, and higher heart rate variability does not only predict 
lower tumor burden but also improves survival in humans [36].

Conclusion
Therefore, cell kill hypothesis is a theoretical model that 

predicts the ability of antineoplastic drugs to eliminate cancer 
cells. A 1-cm breast tumor may already contain 109 cancer cells 
before it can be detected during manual examination. After first 
round of chemotherapy the cancer cells is reduced to 107(99% 
kill). When second round of chemotherapy is applied the cancer 
cells reduce to 106. At this point, T cells are removed remaining 
cancer cells. It is likely that no antineoplastic drug or combination 
of drugs will kill 100% of tumor cells. A relatively small number 
of cancer cells may be removed after chemotherapy suggesting 
that early diagnosis and treatment may be the goal standard 
[37]. But the reviewed formulas can be used to determine cancer 
parameters whose values may indicate whether one or more of 
therapeutic interventions can be successful [38-48].
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