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Introduction
Cerebral cavernous malformations (CCMs), also referred to as 

cavernous angioma, hemangioma, or cavernoma, are composed 
of abnormal hyalinized capillary clusters typically surrounded by 
deposits of hemosiderin [1-3]. These vascular abnormalities of 
the brain may be asymptomatic, however, a plethora of symptoms 
may occur in some of the affected patients including seizures, 
hemorrhages, and neurological deficits with the potential of 
a substantial decline in the general health status and quality of 
life [4,5]. Primary objective of CCM treatment is reduction of 
the hemorrhage risk. Surgery is a viable therapeutic option for 
elimination of future risk of bleeding from CCMs [6,7]. From a 
radiation oncology standpoint, radiosurgery has emerged as a 
viable treatment modality for management of several intracranial 
and extracranial benign and malign conditions [8-30]. In the 
context of CCMs, radiosurgery has been utilized as a noninvasive 
modality of management for selected patients with high risk  

 
CCMs located at eloquent brain regions typically not amenable 
to surgical removal. While reduction in hemorrhage risk with 
radiosurgery is a pertinent goal of treatment, precise target 
definition is an indespensable part of radiosurgical management 
to achieve a favorable toxicity profile and treatment outcome. 
Multimodality imaging has been integrated into target definition 
for CCMs to achieve precise radiosurgical treatment under robust 
immobilization and image guidance. In this study, we assessed 
incorporation of multimodality imaging into target volume 
definition of CCM radiosurgery.

Materials and Methods
A total of 23 patients treated with Stereotactic Radiosurgery 

(SRS) for CCM at our institution were identified and included in 
this study. Informed consents of all patients were obtained before 
SRS, and management of patients with radiosurgery was decided 
by multidisciplinary collaboration of experts from neurosurgery, 
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neuroradiology, and radiation oncology after evaluation of 
lesion size, location, symptomatology, presenting symptom and 
performance status, patient age and preferences. On the day of SRS, 
a stereotactic head frame was affixed to the patients’ skull under 
local anesthesia by use of 4 pins. The patients were then simulated 
at Computed Tomography (CT) simulator (GE Lightspeed RT, GE 
Healthcare, Chalfont St. Giles, UK) available at our institution 
using a slice thickness of 1.25 mm. Acquired planning CT images 
were transferred to the delineation workstation (SimMD, GE, 
UK) for contouring of the target volumes and critical structures 
in close vicinity. Target volume definition for SRS was based 
on CT simulation images only or fused CT and T1 gadolinium-
enhanced MR images typically acquired the day before SRS. Target 
definition with CT only and by incorporation of CT-MR fusion was 
comparatively evaluated. Definition of ground truth target volume 
for actual treatment and comparison purposes was performed 
by consensus of treating physicians after comprehensive 
assessment and colleague peer review. ERGO ++ (CMS, Elekta, UK) 
radiosurgery planning system and Synergy (Elekta, UK) Linear 
Accelerator (LINAC) was used for SRS planning and delivery, 
respectively. Median prescribed dose for radiosurgery was 15 Gy 
(range: 10-20 Gy) to the 85%-95% isodose line encompassing 
the target volume. Image Guided Radiation Therapy (IGRT) 

techniques such as kV-CBCT (kilovoltage Cone Beam CT) and XVI 
(X-ray Volumetric Imaging, Elekta, UK) were used for treatment 
verification. All patients received dexamethasone with H2-
antihistamines routinely after SRS. 

Results
Twenty-three patients receiving SRS for CCMs at our 

institution were evaluated for target volume determination using 
CT-only imaging and CT-MR fusion based imaging. Ground truth 
target volume defined by treating physicians after comprehensive 
assessment and consensus was identical to target definition 
using CT-MR fusion based imaging in the majority of patients. 
Contouring of target volume on the planning CT and MR images 
was optimized through selecting appropriate windows and levels 
in SRS treatment planning. Delineation accuracy was improved 
by using the coronal and sagittal images along with the axial 
planning CT images. Optimization of target volume coverage and 
normal tissue sparing was achieved by use of the Arc Modulation 
Optimization Algorithm (AMOA). Single session SRS was 
performed using the Elekta Synergy LINAC with 6-MV photons 
available at our institution. Sagittal planning CT and MR images of 
a patient with CCM are shown in Figure 1.

Figure 1: Sagittal planning CT and MR images of a patient with CCM. 

Discussion
The role of SRS in management of CCMs is still being refined. 

Surgery remains to be the primary mode of treatment with 
complete elimination of future bleeding risk. However, surgical 
resection may not be preferred in selected patients due to critical 
location of some lesions at eloquent brain regions in intimate 
association with vital neurovascular structures. Alternative 
therapeutic strategies are considered when there is excessive 
risk of surgical complications. In this context, SRS has emerged 
as a viable treatment alternative for selected patients with 
CCMs [17,31-34]. Given the hazards of rebleeding from a CCM 
with previous hemorrhage history, a more active approach with 
radiosurgical management of surgically inaccessible deep-seated 
CCMs has been suggested in the literature [35-37]. Nevertheless, 

treatment with radiosurgery may also cause untoward toxicity 
leading to deterioration in the patients’ quality of life. From this 
aspect, target volume determination for SRS of CCMs becomes 
more critical. MRI may add to the accuracy of target definition in 
SRS of CCM by providing valuable information. CCMs are typically 
surrounded by a hypointense ring resulting from hemosiderin 
deposits of microhemorrhages [38-40]. MRI substantially 
facilitates detection of incidental CCMs, by demonstrating 
a reticulated pattern including mixed hyperintensity and 
hypointensity on T1 and T2 weighted sequences along with 
a typical hypointense rim visualized on gradient-echo or T2 
weighted imaging.

Developmental vascular anomalies may be detected by 
use of contrast enhanced MRI. Screening of familial CCMs may 
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be performed by using susceptibility weighted MRI. Utility of 
neuroimaging with MRI for determination of central nervous 
system radiotherapy and radiosurgery target volumes has 
been addressed in the literature [41-49]. In the context of CCM 
radiosurgery, MRI improves precision in target definition by 
producing additional imaging data for accurate target localization. 
The ground truth target volumes defined after comprehensive 
assessment, collaboration and consensus of treating physicians 
were found to be identical to target volumes defined based on 
CT-MR fusion based imaging in majority of patients in our study, 
supporting the incorporation of MRI in radiosurgery treatment 
planning.

In conclusion, MRI may be used to improve target definition 
for SRS of CCMs. Clearly, future studies are required for assessing 
the utility of multimodality imaging for radiosurgery target 
volume definition for radiosurgical management of CCMs.
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